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Preface

This book is a documentation of The Ratio Symposium, organised
by the Institute of Sonology at the Royal Conservatory The Hague
and held there from 14 - 16 December 1992. The Symposium formed
the first part of a project which was followed up and concluded by
The Ratio Festival, held at the Conservatory from 3 - 8 April 1993.
For more information on the project as a whole, see the brochure
cover reproduced on page 71; the programme of the 1993 Festival is
given in the appendix on page 321 The lectures held at the
Symposium were videotaped, transcribed and sent to the authors
for correction. The alterations in the returned texts ranged from
slight additions and/or deletions to - in a few cases - completely
rewritten papers: I would like to express my indebtedness to the
fifteen other authors besides myself for the hard work involved in
this and for their patience in (sometimes repeatedly) reviewing my
edited results until total satisfaction was reached. My gratitude is
also extended to Marijke Reuvers of the Royal Conservatory for her
indefatigable assistance in organising the Ratio Project and for
picking up the pieces afterwards. Also to be thanked are my
colleagues of the Technical Department of the Conservatory for
their permanent readiness to give help whenever it was required.

Clarence Barlow

Professor of Composition and Sonology
Royal Conservatory The Hague
February 1999
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Monday 10:00
Clarence Barlow
On the Quantification of Harmony and Metre
1. On Metre

[Tape example]

This piece is called “Otodeblu”. It was played on a Roboard, a
pianola driven by a computer. It was composed in 1990 using my
programme Autobusk here on this Atari computer; it runs on
various parameters such as tonality (making the music more - or
less tonal, as the case may be), metricity and such like. Let me give
you an example of how the programme works; then I'll explain
why I needed a programme to compose the piece.

When | start the programme, you will hear some random music
which is produced as a result of probability tables; let’s just start it
and listen [starts computer programmel. The music is set to a very
clear key and to a very clear metre. Let me now very slowly take
down both the metricity and the tonality [operates programmel.... Ok,
we've finally reached a stage where there is no feeling of key or
metre any more. There is of course a pulse feeling, but it isn’t
graduated any more into the form of a really clear metre — where
you could tell where the “one” would be.

Why does one need this? Suppose you want to write a music which
is (as I've done here) very variable in both its key and its metre
feeling. You need to know how to move to intermediate stages.
What for example would be an adequate definition of metric music
as opposed to non-metric music? For this I chose a very simple
algorithm or definition: In the case of ametric music, all the pulses
are equally probable.

So no matter what metre you have, suppose six or eight beats in
the bar or whatever, they will in this case all have the same
probability. Which means the bar doesn’t make any more metric
sense. But if you want to make the music more and more metric,
you have to then decide how probable or how important the
individual pulses ought to be. This assumes there might be a
correlation between their importance and their probability.
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[1- Two metres compared
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1 shows an example of two
metres, 3/4 and ©/8. If we look
at these rhythms you'll find
them getting gradually thinner:
in each case I've taken away one
attack at a time. And [ think
you'll agree with me that the
right column goes much more
clearly together with a ©/8
feeling, and the left with a 3/4
feeling. This is reflected in a
series of numbers at the top -
[5,0,3,,4,21 and [5,0,2,4,1,3], an
ordering of the individual pulses
according to their importance. |

2N call this the Indispensability of

Attack. The formula for it is somewhat threatening — this is only
its main part (see [2)' - but you can programme it into a computer
and then forget it. According to this system, any metre can be
expressed in terms of the relevance of its pulses.

[2 - Indispensability formula
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Let me give you one more example. Take a 12/16 measure (see [3):
this system numbers the indispensability from 11 down to 0 in the
given order.

[3 - 12/16 indispensabilities
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2. On Priority and Probability

What do I do with these priorities? I set up a correlation between
priority on the X-axis and probability on the Y-axis, as in [4. In the
case of an ametric music all pulses are equally probable,
irrespective of priority - see the horizontal line. But the more
metric the music gets, the steeper the line. This means that in this
case the higher the priority (here 1is higher than 2), the higher the

probability. This very simple relation allows one to compose a
music that can vary smoothly from metric to ametric.

[4 - Probability as a function of Priority
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Now I must say at this point that I am most decidedly not a
musicologist, but a composer in search of techniques to realise
certain pieces. Of course, the discoveries | make, the techniques I
develop are very often close to things that seem to have some
musicological significance. But I leave that to you. What I say here
concerns finding a tool for making a piece of music.

The same correlation of priority and probability goes for the pitch
domain. Using a pitch set (this could be e.g. a major or a chromatic
scale), I allot to each pitch a certain unique priority, no two pitches
the same way. And if the music is to be tonal, pitches of higher
priority become more probable and thus more frequent.

There is also a correlation between the pitch and pulse domains
(see [5). Where the pulse is important, more indispensable, tonality
rises, going down on the weaker pulses. This is because you can

effect smooth motion in a music by passing notes on weak beats
and structural notes (Schenker’s term) on strong beats.

The Ratio Symposium



[5 - Pitch-Pulse matrix for a Major Scale and a 6/8 Metre

a SIX-EIGHT METRE

S. Pulse: 1 2 3 4 5 6
= Priority:1 6 4 2 5 3
2 C12 30,4 12,5 12.6 153 12.5 13.1
% B |7 0.0 12.5 12.4 9.7 12.5 11.9
w A6 0.0 12.5 12.4 10.8 12.5 12.1
Q G|3 19.6 12.5 12.6 14.2 12.5 12.9
= F |8 0.0 12.5 12.3 85 12.4 11.7

E|5 0.0 12.5 12.5 11.9 12.5 12.4

D |4 88 12.5 12.5 131 12.5 12.6

Cl1 41.2  12.5 12.7 16.5 12.6 13.3

So I raise the degree of tonality (reflected by the angle of the line
in [4) and decrease it wherever the pulse is weaker. Where do I get
my pitch priorities? Now that’s a different kettle of fish......

3. On Harmonicity

For several centuries people have been saying that musical
intervals are of greater and lesser consonance. Another word used
for that is Harmonicity. The word “consonance” I reserve for a
totally different phenomenon: in the piano’s middle range, a major
second sounds generally more consonant than a minor second. But
taking the same two intervals down to the bottom octave, you'll find
the minor second the less dissonant of the two. Compare the
perfect fourth and the tritone in the middle, then in the bottom
range - the dissonance/consonance behaviour is reversed.

The sonic roughness caused by hairs on the basilar membrane and
by other physiological matters is a phenomenon I call “consonance
and dissonance”, corresponding to general usage. It has to do with
timbre and the basilar membrane, which I think Jim Tenney and
Stan Tempelaars will tell us a lot more about, so I won’t go into it
any further. For me, “harmonicity” is the phenomenon which
establishes whether intervals are more stable, like the octave and
fifth, or less, like the tritone, which I call less harmonic.

It would seem logical to me that a music which is atonal uses all
intervals equally probably or frequently. But if the music gets
increasingly tonal, then more harmonic intervals, like octave and
fifth, gain in probability against those of lesser harmonicity. The
question now is: What is more and what is less harmonic?

Barlow: On the Quantification of Harmony and Metre 5



Pythagoras was one of the first to say that the two numbers of an
interval ratio are an indication of the (as I say) “harmonicity”: the
smaller the numbers, he said, the more harmonic the interval and
vice versa. Hindemith, Schoenberg, Partch were to say the same
thing several centuries later. But the concept of size alone is
problematic - the intervals 1:2 (octave), 2:3 (fifth), 3:4 (fourth) etc. -
are all nice and harmonic, and that’s what we also learn at school.
Going up to 5:6 that’s fine, but the next interval 6:7 is generally not
used in music of the West (or, by the way, of India). Nor is 7:8. But
8:9 is the well-known major tone, followed by the minor tone 9:10;
another gap then ensues containing 10:11, 11:12, 12:13, 13:14, 14:15, none
of which you’d normally find in classical music. 15:16, which comes
after, is our minor second. One can see that all intervals in those
gaps - 6:7, 7:8, 10:11, 11:12, 12:13, 13:14 and 14:15 - contain prime numbers
larger than 5, the primes 7, 11 and 13 in this case. Thus the
primeness of the factors plays a role as well: harmonic intervals
are formed not only by small numbers but also by divisible
numbers. Both are essential - smallness and divisibility.

In 1978 I came up with what I called [6 - Indigestibility formula
the Indigestibility of Numbers, a
concept combining smallness and
divisibility. If a number is large but 2
divisible, it is “digestible”. [6 shows the E(N)=2§{nr(pr_1) }
formula: the integer “N” is the product =

of powers “n” of primes “p”; put “n”
and “p” into this formula and you get
the indigestibility value expressed by

the Greek letter “g”.

Pr

Examples of this for 1-16 are to be found on the opposite page in [T:
the primes 7, 11 and 13 are very indigestible, their corresponding
values (with that of 14) being the only ones over 10. The value 10
seems to be a kind of general cultural indigestibility barrier, since
only less indigestible numbers are commonly used in classical
music ratios. Note the power 2 in the formula; raising this makes
higher primes much more indigestible, so this power is a key to the
rate at which the indigestibility increases with the primes. I call it
the “prime enmity factor”, because the lower it is, the friendlier,
i.e. more digestible each prime gets.
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[7 - Indigestibilities
1-16

Using the above | now arrive at a formula for
harmonicity ([8) by adding the indigestibility
values and inverting the sum.

N| E(N)
[8 - Harmonicity formula for an interval P:Q

1 0. 0000000

2 1. 0000000

3| 206666667 H(P.Q) = sgn(E(Q-E(P))

4 | 2.0000000 ’ E(PI+EQ)

5 6. 4000000

s 18' Sggsi’ig The numerator tells you the direction of the

s | 3 0000000 interval’s polarisation. For example, you might

9 | 5.3333333 agree with me that the perfect fourth pulls

10| 7.4000000 upwards, that its upper note is the root. This is

111 18.1818182 a matter of feeling; whether we agree or not is

12 4. 6666667 h I h h h

13 | 22 1538462 another matter. ere assume ‘t at e.g. the

14 | 11.2857143 perfect fourth and the minor sixth have an

15 9. 0666667 upwards puﬂ and .

16 | 4 0000000 that the Rfth and [9 - Some Harmonicities

the Octave have a Cents Ratio Harmonicity
downwards one - the “sgn” sets a | . 1 _
plus/minus sign for the polarity. 1.11. 731 15 16 -0. 076531
. . . . 182. 404 9:10 0.078534

Here in |§ is a set of intervals in one 203. 910 8: 9 0. 120000
octave, going from 0 to 1200 cents (100 | 231.174 7:8 -0. 075269
cents form one semitone). Given its | 266.871 6:7 0.071672
ratio, each interval’s harmonicity is g?‘é' éif 2; 22 ‘8' 858%2
derivable according to the formula ; | 35 5, 45 0. 119048
for example the perfect fifth 2:3 has a | 407.820 | 64: 81 0. 060000
harmonicity of 0.2727, the perfect | 435.084 7:9 -0. 064024
fourth 3:4 has a value of -0.2143 §98~ 2?5 3:4 | -0.214286
(upwards polarised) and so on. And so 7(1)?' 95; Zg: %7 '8' gggg;g
you can see that for various intervals 764: 916 9 14 0: 060172
you have varying degrees of | 813.686 58 -0. 106383
harmonicity. All this is part of a | 884.359 3:5 0. 110294
composer’s technique; you can get 905.865 | 16:27 0.083333

i harmonicity values which do | oor 127 7121 20066879
various ha y 968.826 | 4:7 0. 081395
seem to correspond pretty well to at | 994090 9:16 | -0.107143
least my feeling and to that of some |1017.59% 5:9 -0. 085227
colleagues of mine. 1088.269 | 815 | 0.082873

1200. 000 1: 2 1. 000000
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Indigestibility is also to be found in interesting places. | asked
friends of mine in a restaurant (which is a very nice place to ask
friends) “if you had a round cake or a pizza, or something like that,
to be cut into equal segments, what would be the easiest number of
pieces to cut it into?” And they all said 2. And I said, well forget 2,
now you have 3 to 10: what’s your choice? And they all said 4. In
this way the number order turned out to be: 2, 4, then 8, 3 and 6
lumped together (there was some dispute about their order). Then
came 9 and 5 (some dispute here again), followed last of all by 7.
Look at the indigestibility values: you'll find a very similar rating.

Another case was a Stanford University experiment of 1977, in
which people subjectively evaluated similarities of the digits 0 to 9.
They found that if a computer placed these digits on a sheet of
paper, such that their distance would match the similarity ratings
(a technique called multi-dimensional scaling), the digits increased
in magnitude from left to right - see [10.. Now, the computer didn’t
know these were numbers, just took them as symbols!

[10 - Numerical Similarity Scaling (Stanford 1¢75)

prime_ A composite

0" Z
> - 5%
= Mmagnitude—~ % N6
S % 9
o 3 Jf/j -
1 =y
5,

Note also that the even numbers are separated from the odd by a
horizontal line. Another slanting line separates prime numbers
from composites, a line I found to be practically my indigestibility
axis: by plotting perpendiculars to that, I found it comes pretty
close to the indigestibility formula - another case where 1 was
gratified to find a parallel in nature. Well let’s call it nature!
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Using the harmonicity formula I then proceeded to rationalise
scales. It’s all very well to say, the more harmonic the interval the
more probable it should be in a music, but how do I know that the
perfect fifth (shall we say) is a harmonic interval? By listening to it
maybe. | could evaluate each interval by listening. But there are
cases where | wouldn’t be very sure, for example in the case of
micro-intervals. The piece we heard, “Otodeblu”, had 17-tone
tuning, with lots of intervals I'd never known before, never learnt
about in school. How would I know their ratios? Because if you talk
about a perfect fifth, for instance, you're talking of a scale degree,
not a ratio. How do I know the perfect fifth could be a 2:37 How
could I know the ratio for a neutral third of 350 cents?

Some systematic method of rationalisation would have to be
developed: I decided to go about it as follows. Let’s look for instance
at the region around the tritone, 600 cents ([lla) within a range of
plus or minus one quarter tone. I collect a large number of
intervals in this range and plot them according to their pitch and
their harmonicity. Here, for example, is a 45/32, a 64/45, a 10/7, a
7/5 and a whole lot of others very densely packed together? Which
one of these several ratios could be a given tritone?

[lla - A list of several intervals between 550 and 650 cents
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The procedure I used was to put a Gaussian bell-shape over the
place that I want to tune, to rationally understand (see [lIb. - the
bell-top is clipped). Now only a few candidates are left, those
further away being pushed out of existence. The width of this bell
is variable, depending on your own intervallic tolerance.

[lib - The same intervals, harmonically weighted in favour of 600 cents
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What do I do with these, shall we say two or three best candidates?

Let’s repeat this for the major scale in [12a: here is an octave, with
the perfect fifth 3/2 standing very high there in the middle, the
perfect fourth 4/3 further left. Plus-minus signs are ignored.

We place bells over the places to be understood (see [12b). In each
tent-like enclosure, we see some candidates left over. Taking the
two or three best candidates, we tune the whole scale by using
candidate 1 of degree 1, candidate 1 of degree 2 and so on. Then
candidate 2 of degree 1 against candidate 1 of degree 2 and so on.
For every possible combination of a candidate per scale degree, we
add all the intra-intervallic harmonicities — the sum indicates how
harmonic the general tuning is. And as a matter of fact the result
comes out very nicely.

10 The Ratio Symposium



[12a - A list of 77 intervals in an octave
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[12b -  Ditto, weighted for a tempered major scale (bell-tops clipped)
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Doing this to a twelve-tone chromatic scale, the rationalised set

I:1, 15:16, 8:9, 5:6, 4:5, 3:4, 32:45, 2:3, 5:8, 3:5, 9:16, 8:15, 1:2.
is produced, which according to theory books, is the classical
tuning of the harmonic chromatic scale.

Doing the same for a 13-tone tuning (0, 92, 185 cents etc.) we get
I:1, 128:135, 8:9, 6:7, 4:5, 16:21, 35:48, 56:81, 160:243, 5:8, 7:12, 5:9, 128:243, 1:2,
intervals we actually know quite well.

Finally, a 17-tone tuning (0, 71, 141 cents etc.) yields
L1, 24:25, 25:27, 8:9, 27:32, 9:11, 25:32, 3:4, 18:25, 25:36,
2:3,16:25, 11:18, 16:27, 9:16, 27:50, 25:48, 1:2

I've tried this on Indian and Arabian scales with plausible results.
J.Tenney: Clarence, how wide is your tolerance?

C.Barlow: Here 30 cents nominal tolerance - the place at which the
Gaussian Bell arbitrarily reaches one 20th of its maximum. I
usually use about half the smallest interval.

J.Tenney: So what is the cents value for which you arrived at 6:77
C.Barlow: 277 cents as input; the output is 10 cents lower.

J.Tenney: So you've filtered out 5:6 by your Gaussian.

[13a - Rational 12-equal (h>0.115) [13b - Rational 13-equal (h >0.072):
e - c by'=’
5:6 11516 LN o= a2 ] 59
fei= Fi_H3:8
56:81 35-48
ac-
7:12 \
g>
b?-. 1 :
86:7 1(:32 160:243

2 cé=’
4:5 128:135
hy
/128:243
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C.Barlow: Exactly - it all depends on your tolerance! The result here
deviates from the input by less than 17 cents. [13a is a diagram
showing the network for a twelve-tone tempered system of all
intervals more harmonic than 0.115. You find the tonic [C] in the
middle linked with [D] and [G] but not with [F#]. But [F#-Bl, [B-Gl,
[B-Al, [F-Dsl, [Dr-Ebl are all linked. Below the note-names are the
ratios of these intervals.

In [13b, the same is done for the thirteen-tone tempered system.
I've given them names like these, derived from whether they're
tertian or septimal intervals (based on the primes 5 or 7), but the
ratios might mean more to you.

[14 shows work of my friend and former student Georg Hajdu, now
in Berkeley, California’ Based on my harmonicity formula, it
concerns what he calls the “energy of a pitch space”. You see
downward bulges or dips at the more harmonic intervals. To
rationalise a 17-tone tempered scale, he puts 17 equidistant balls
into an octave of this pitch space and sees where they appear. In
many cases they’re on the flank of a dip. In such cases, he says,
there is a strong pull on the ball causing a rationalisation of the
scale degree into the dip. His method plots an energy curve and
finds where the balls want to fall in. It’s interesting to compare
this rationalisation method to my own, candidate-based one.

[14 - A 17-equal scale against a map of Harmonic Energy (after Hajdu)
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4. Harmonicity in the Sky

Talking about curves and balls falling into things... Here’s
something completely different: a map of density of the asteroid
belt between Mars and Jupiter ([15)...

[15 - Relative Density of Asteroid Belt vs. Harmonicity (Prime Enmity 1.2)

<Orbit Time relative to Jupiter in Cents
2.0 2800 2400 2000 1600 1200 800 400 0
70.1]
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< 0.6 g
0.7 8
y 0.7 =
0. 81 =
0.9
1. 01
1. 19
1.2 25 50 75 0%
1.3 <Orbit Time relative to Jupiter in Percent~ &
. 3 4 )
<Distance to Sun in Astronomical Units—

There are practically no asteroids around Mars, which is way over
on the left outside the diagram. And on the right at Jupiter you
have the Trojans, occuping the same orbit. The gaps you can see
are caused, according to astronomers, by the “commensurability”
(harmonic ratios) between the places in question and the planet
Jupiter in relation to their orbiting time around the sun. The place
marked 100% is at Jupiter’s orbit. Look carefully at the 50% mark
(1:2, a “distance octave” from Jupiter, so to speak) - you see a very
deep cleft there called the Hecuba gap. Another one is at 33% (1:3).
These gaps ought to and are indeed comparable to the harmonicity
landscape running from left to right: the harmonicity increases
practically everywhere there’s a gap. These values are based here
on a modified indigestibility formula which is prime friendlier: the
power (“prime enmity factor”) was experimentally lowered from 2
to 1.2, so it’s the same formula, but with the power changed.

4 The Ratio Symposium



Here is an attempt to investigate the commensurability gaps in the
rings of Saturn, based on harmonicities from the orbiting times of
its satellites ([16), of which the first three, Mimas, Enceladus and
Tethys are individually shown in the lower half of the diagram; in
all these curves, the harmonicity value is multiplied by the cube
root of the mass and divided by the distance from a given satellite.
The harmonicity curves generated by all three show peaks
corresponding to the big Cassini gap between the A-and B-rings.
The combined curves of the eight largest satellites is shown in the
upper half All this was done out of curiosity. And it matches rather
nicely.

[16 - Saturn rings A-G, harmonicity curves from satellites

Orbit: 4|0 hrs 3|0

Tethys—e

300

- ar—»
I I

Enceladus Tethys
300 Mm_ 200 100 300 Mm 200 100 [300 Mm 200 100
_1 octaves +1 +2 |octs. 0 +1 +2 |0 octs. +1 2 43

So much about harmonicity. My measurement of intervallic
harmonicity, the results of which I found very plausible, enabled
me to compose a certain type of music: given a scale in cents, I
was able to rationalise it and then to create fields of variable
tonality by altering the probability of intervals according to their
harmonicity. The question of scale has occupied me for a very long
time. I'll make a couple more observations on this point in a
minute. But now I'm going back to metre for a while.

Barlow: On the Quantification of Harmony and Metre 15



5. On Metric Affinity

[ spoke earlier about the indispensability of various pulses, ie. of
how relatively important pulses were. In 1981 | tried for the first
time to use this method to find a measure of the Affinity of two
metres, of how similar they might be felt to be. Suppose I match
two metres in such a way that their pulses lie one against one. And
if they don’t match, I subdivide the pulses suitably and sufficiently
so that their finest subdivisions do. And then I measure the
indispensability of each pulse.

Here I have a 2x2x3 pulse system and a 3x5 pulse system ([17); the
indispensability values [11,0,4,8,2,6,10..] of the 2x2x3 metre are
matched against the [14,0,9,3,6,12...] of the 3x5 metre.

[17 - Pulse Indispensabilities for 2x2x3 against those of 3x5

CurrentPulse: 1 2 3 4 5 6 7 8 910111213 14 1516 17 18 19 20

2x2x3Pulses: 1 2 3 4 5 6 7 8 9101112 1 2 3 4 5 6 7 8

Indispensability: 1/ 0 4 & 2 610 1 5 9 3 711 0 4 8 2 610 I
3x5 Pulses: 1 456 7 8 9101112131415 1 2 3 4 5

12 4 713 211 6 814 0 9 3 6

Current Pulse: 21 22 2

2 3

Indispensability: 14 0 9 110
3 27 28 29 30 31 32 33 34 35 36 37 38 39 40

1 3 4

2x2x3 Pulses: 9 10 1 56 7 8 9101112 1 2 3 4
Indispensability: 5 9 3 4 8 2 6101 5 9 3 711 0 4 8

3x5Pulses: 6 7 8 9101112131415 1 2 3 4 5 6 7 8 910
Indispensability: 12 110 4 713 211 5 814 0 9 3 612 110 4 7

Current Pulse: 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

2x2x3 Pulses: 5 6 7 8 9101112 1 2 3 4 5 6 7 8 9101112
Indispensability: 2 610 1 5 9 3 711 0 4 8§ 2 610 1 5 9 3 7

3x5Pulses: 11 12131415 1 2 3 4 5
Indispensability: 13 211 5 814 0 9 3 ¢

[18 - Metric Affinity formula!

M-=- 1
Q0 2

18 Z[H{q)zi(mn-l) mod in)}]z-z
2o ( n=1_i=1 )
e 2
70, [, -1?

1=1
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Multiplying the corresponding indispensabilities of the two metres,
squaring the products and adding the squares, I arrived at a
formula ([18) for the metric affinity and found different affinity
values for various pairs of metres.

I then took simple ratios like 1:2, 2:3 as if they were polymetres. For
2:3, imagine one bar with two pulses and one equally long in time
with three, and measure their metric affinity. The joined line in [19
is the metric affinity curve, compared to the dotted line, the
harmonicity curve for the ratios. | was flabbergasted to find two
totally different methods yielding results so unexpectedly similar.

[19 - Metric Affinity (joined line) vs Harmonicity (dotted) for simple ratios

1 80 2415 25 9 &8 64 272 5 4% &4 25 3 2018 Z2 45 25 27 2 16 5 50 2 16 9 5 2F 8 25 1

6. On Ragas

I'll go back now to 1967, when I lived in Calcutta and began to learn
about Indian music, about which I'd known nothing before except
some names of instruments, like sitars, but which I'd not listened
to consciously. My family was anxious to preserve its feeling of
Angloid identity, and it really wasn’t the done thing to listen to
such music. The day I brought my first sitar, the hue and cry there
was in the family! And the first time [ wore Indian clothes! But I
managed to get my parents and other relatives used to it - little by
little.

[ was nineteen when I began to actively listen to Indian music; and
[ discovered that there was quite a lot about it that I could learn
quickly through my knowledge of European music. So I began to
study the structure of various scales and ragas”.
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Soon after - this is already about twenty years ago - I combined
standard Indian tetrachords to form a table of modes shown in [20
in Indian notation Sa Re Ga Ma Pa Dha Ni Sa (meaning exactly Do
Re Mi Fa Sol La Ti Do) in abbreviated form: here the small letters
“.rgm..” mean minor intervals plus perfect fourth, the capitals
“.RGM..” major intervals plus augmented fourth. I enjoyed
inventing Pseudo-Grecian names for the tetrachord combinations,
names like Phrylyrian, Miphryxian, lophrynigian, or Dolian, Lylian
and so on. You also find here all the church modes Dorian,
Phrygian, Lydian etc. (the Mixolydian is here termed “Mixian”).
But this was also a precise nomenclative handle; e.g. the syllables
“—phry-di-” imply a minor second with an augmented fourth and a
major seventh, combining Phrygian and Lydian.

D.Lekkas: It also means an eyebrow.

C.Barlow: Does it? Well one could raise that! ....

20 - The Barlopoulos Pseudogrecian Nomenclative System for
the Forty-Eight Septagenous Heptatonic Scales®

pdnS~  pdNS~ pDnS - pDNS~ PdnS - PdNS - PDnS - PDNS -
Sregm| Locrian Lonicrian Locririan Locrinian Phrygian Phrynigian Phryrian  Phrynian
SrgM|-—————- o Phryligian Phrylydigian Phrylyrian Phrylydian
SrGm|Milocrian Iolonicrian Milocrixian Iolocrinian Miphrygian Iophrynigian Miphryxian Iophrynian
StGM| —~—————— e o Lyphrygian Lyphrydigian Lyphryxian Lyphrydian
SRgm| Aocrian Aonicrian Docririan Docrinian  Aolian Aonilian Dorian Donian
SRgM| -———=== = Aolylian  Aolydilian Dolyrian  Dolydian
SRGm| Micrian Ionicrian Micrixian locrinian Milian Ionilian Mixian Ionian
SRGM| -—————=  —————om e Lylian Lydilian Lyxian Lydian

Around the same time, I mapped possibilities of scale structures
with a computer - see [21 Each segmented circle here is a scale,
the segments being not of a cake or a pizza, but adjacent notes in
an enharmonic twelve-tone cycle® of fifths - filled segments mean
notes present. Some scales have a whole bunch of adjacent notes; if
there are e.g. five, they form a regular pentatonic scale, opposite to
which there could also be one or two more adjacent notes. Suppose
I take the five black piano keys and add a perfect fourth, say [A+D]
to them as a drone: this is scale #2545 in the diagram; it confronts a
tonic-subdominant drone with a foreign pentatonic scale. The
harmonic potential can thus be predicted by looking at the
diagram. And this kind of harmony is indeed used in ragas.
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21- Twenty-four scales depicted as 12-bit clockwise cycles-of-fifths:
the tonic (coded as the most significant bit) is at 3-4 o’clock.

SGMDN SGmMDN SGMDnN  SGmMDnN SgGMDN  SgGmMDN  SgGMDnN SgGmMDnN

SGMdDN  SGmMdDN  SGMdDnN  SGmMdDnN  SgGMdDN  SgGmMdJDN  SgG N SgGmMdDnN

SrGmMDN  SrGMDnN SrgGmMDN  SrgGMDnN SrgGmMDnN

SrGMDN

SrGmMDnN  SrgGMDN

Two aspects of ragas fascinate me especially, which I've not found
in any book. One I've just mentioned; the other’s a set of “one-way
streets”. Here’s a tape of ragas Behag and Kedar with three pieces
each. Both ragas have the same notes (major scale plus augmented
fourth); what differs is the typical melodic pattern, shown here on
tonic [C] -  Behags CEFGBc¢B, (A)GF# GEF} E, (D) C

Kedar. CF,EG, FAAGe, AGF¥ AGFY, DC

[Tape examples of musicians: Ragas Behag & Kedarl

This note-routing is one of the aspects that makes ragas special
One can draw diagrams of the probability that a note in a given
raga will go to another note (a so-called Markov chain of order 2),
as in [22 : three different ragas use the same scale (#2544). The
diagrams show that the ragas are distinctly different.

[22 - Statistical behaviour of three isoscalic ragas -
density of shading indicates relative frequency of occurence
Scale #2544 [StTGMDN]

Marwa Puriya Sohani

, SrGMDN , SrGMDN |, SrGMDN
1 EBEEER . | BB I ]
SEOOO000 SEOU00UDS BOED00D
rREEEODE - BERELURE0UE BEEECLCC
GRaLI BLIL GO CIEG OB EIELL]
M[[] I@DMIDIEI@IM-DDED%D

DEIEINL&EE DLNDEELE OB LE
NELBUUEE NEELEEERNBELDUEL
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With this understanding [ typed various raga patterns into the
Cologne University main computer in 1976 and synthesized Markov
chains, in other words new patterns in the same ragas. Then I
played these syntheses to musicians in Calcutta. Now some ragas I
believed would be recognizable only from Markov level 2 on - ie.
considering at least two-note patterns. But some would be already
clear on level 1. And some, raga Gaursarang particularly, would
need level 3. This suspicion was indeed completely borne out by my
experiment. It’s something I'll write about in detail some day.

Twenty years ago | started a catalogue of ragas by coding the
presence or absence of a given note in the octave, a simple bit
configuration. The presence of a Sa (the tonic) would yield 2048;
you set the various bits for each scale degree as a member of an
enharmonic cycle of twelve fifths, getting a binary code. | had this
exercise book in which I used to, whenever I heard a raga new to
me, enter it at its code number. There were of course lots of gaps,
because not every combination is used. But there are some places
where there were so many entries, | had to stick an extra page on.
For example #4035 is the major scale with the added augmented
fourth - there are no less than fifteen ragas listed here. It’s one of
the most popular scales in Indian music.

The one-way street system is the second aspect | mentioned. Let’s
go back to the first aspect, that of a raga’s harmonic possibilities. A
raga using the black keys added to [D] and [G] as drone would
match #2297 in my catalogue ([SrtGmMdN] - not shown in [21) and
could - and would - be played as raga Lalit by musicians.

[Tape example: Raga Lalit]

In fact if you take all combinations of five black keys placed on any
perfect fifth, with either of the fifth’s two notes as tonic (e.g. if you
have [G] and [D], either could be the tonic), you would get 24
possible ragas. And this is borne out by practice.
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7. On the Origin of Scales

Talking about scales always presumes you have a set of pitches to
go by. But what makes these pitches arise? What if you want to
devise a scale from a different set of prime factor ratios? If the
prime number 7 is to help generate a scale, what do you do?

Take the familiar grid of fifths and thirds to be found in theory
books (see [23); those who use it know that the chromatic scale’s
twelve notes forms a kind of squat rectangle in the middle. The
third being less harmonic than the fifth, I stretched the vertical
axis to counterbalance this disadvantage” now the chromatic scale
is in a nice circle - which seems to make sense. The 22 srutis of
Indian music are enclosed in an ellipse —-they’re in shaded boxes:

[23 — Network of 2:3 fifths (horizontal) and 4:5 thirds (vertical)

| P8 cold G# D8 | AB| | || B3| Fx 1 Cx | Gx|—{ Dx|{ Ax| < Ex |-

—IAbbp L {Ebbp | 1Bb || Fhb | Cth|— Gthl—| Dbb[—{ Abb| | Ebb|—| Bbb|—| Fb | Crl— Gh—
| | | | | | | | | | | | |

Is this how scales are generated? If you throw an oil film on a pitch
grid, stretched or not, and it forms a nice round shape, would this
contain a prospective scale? I think not!...
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Look at the grid of octaves and fifths in [24 - normally, the poor old
octave is always discriminated against, always taken for granted.
But it’s an interval in its own right. A scale like the encircled one -
[C3 G3 C4 D4 G4 C5 D5 G5 D6l - would hardly be useful. It would seem
that the nearness of the notes will have to play a role as well and
that this grid is nothing more than just a representation, a
diagrammatic interval catalogue because as you see it doesn’t yield
a usable scale. The pentatonic scale, commonly supposed to consist
of octaves and fifths, is enclosed by an implausibly longish
cigar-like shape imaginable on the upper left, written in shaded
boxes (interesting, though, all these ellipses!):

[24 — Network of 1:2 octaves (horizontal) and 2:3 fifths (vertical)

— E2 E3 E9 EI0 | —
— Al A2 A8 A9 | —
—{ DI D2 DS D9 —
—1 GO Gl G7 G8 |—
—Co Cl C7 C8 —
—{F-1 FO Fl F2 F3 F4 F5 F6 F7 |—
—Bb-21—1Br-1—{ Br0 Bl Bh2 B3 Bh4 Br5 Br6 |—
—{Eb-21—Ep-1 EbO Ebl Eb2 Eb3 Eb4 Eb5 Eb6 | —
—{Ap-3LAb-2L 1 Ab-1—1{ AbO Abl Ab2 Ab3 Ab4 AbS [
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I’'m beginning to move in the following direction (but haven’t got
far yet). Imagine, for example, a 3-limit system of harmonicity,
(i.e. based on the prime numbers 2 and 3) and limit this to 2000
cents (nine intervals in triangular boxes in [25), but of course you
can go much beyond this. And cast a kind of filtering Gaussian
curve somewhere in the centre of gravity of all the pitches you've
got. That might yield a scale. In the diagram, all intervals more
harmonic than an arbitrary threshold of 0.07 are shown as ratios;
twelve 5-limit (primes upto 5 in pentagonal boxes) and five 7-limit
intervals (in heptagonal boxes) are also shown. These intervals all
commonly occur in scales of numerous world cultures. Raising the
harmonicity threshold to 0.107 would cause sixteen of the intervals
to be filtered out, leaving a pure Mixolydian scale.

[25 - List of intervals=2000 cents marked according to prime-limit

11 ;
1.0 D

0.H

0.8

0.7

0.6

gﬁi ﬁ:& 4

0.1 i ‘ ‘ T 1 ‘
ool L ||||| Inim ||||| L "|.||||.||'." A
0 20 600 1000 1200 1400 1600 1800 2000

[ could therefore imagine trying to develop scales out of prime
number material - not by drawing circles or ellipses on a grid, but
by setting a harmonicity threshold and selecting intervals of all
possible configurations within a certain prime limit, for example 7.
And by possibly drawing a Gaussian curve somewhere in there and
seeing what gets filtered out. That might be a usable scale.
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See Computer Music Journal Vol 11 No 1(1987) for more detail.

In this text, a ratio notated with a slash (/) indicates the direction of the
corresponding interval, e.g. 4/5 is a falling third, 5/4 a rising one. A
colon (}) ignores the direction, as in 4:5.

Georg Hajdu now lives in Miinster, Westphalia.

The word is pronounced “ra:g”; | used to write it “raag” to counteract
g g
common mispronunciation, but you can’t always swim upstream!

The term “septagenous” pertains to seven classes of pitches (sa, re, ga,
ma, pa, dha, ni), each - with the exception of sa - manifest in two
forms, the lower komal (rgmpdn) and the higher tivra (RGMPDN). The
complete range of pitch names S/tR/gG/mM/pP/dD/nN is exactly
equivalent to theWestern nomenclature C/DbD/E+E/FF#4/GbG/ AbA/BrB
(here arbitrarily C-based). Though it is theoretically known, komal pa
(“Gp”) is never referred to in practice, since it does not coexist with the
preferred tivra ma (“F#”) in scales of Indian music.

These 4095 possible scale-circles (2048 of them containing a tonic) can
be reduced to 35loscale-cycles in all, 66 of which are heptatonic - of
which one is the cycle of seven church modes (lonian, Dorian,
Phrygian, Lydian, Mixolydian, Aeolian and Locrian).

The stretch is effected here by the factor Z (P)/Z_(Q), where P/Q
represents the interval of the Y-axis,, Z.(n) = 1 + 10g(256)/10g(27) when
n=2, else = 2(n-17/n + log(n)/log(2).. Y is the “prime enmity factor”, set
here at 1.2 for [23 (interval 5/3, stretch 1.422) and [24 (3/2, stretch 1.162).
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Monday 11:15
Demetrios E. Lekkas
The Rationale of Ratios and the Greek Experience

I am here on behalf of Professor Amargianakis; he was very
distressed that he couldn’t make it. He was suddenly notified of an
engagement on these very dates. So he regrets he cannot be here.
He asked me to extend his greetings. He sent me in his place,
asking me to come here to talk about Byzantine music.

That’s not a subject which I have a very clear idea on yet. I didn't
really know what [ was to do, but then I didn't write anything - I
came here, | looked at what everybody else was speaking about
and thought “Oh yeah - weTe fine!”; because my domain is really
that of ratios and the mathematical theory of music. Actually [ am
in the process of completing a whole book on an organized
mathematical way of looking at the theory of music.

Byzantine theory is in a state of chaos. [ promised Mr
Amargianakis that I would help settle things: look into Byzantine
music again and try to come up with some answers. We'll talk
about that later. He was very encouraging in telling me that
whatever | was writing could be turned into a doctoral
dissertation. So by chance, as [ happened to study mathematics, I
also accidentally happened to get into the University of Athens. So
there we are now. A week ago Professor Amargianakis told me I
had been a doctoral candidate officially since April. I hadn't been
aware. That’s the way things work in Greece sometimes. Anyhow,
[ was very happy to come here, because | have found a lot of
people working along similar lines. When you think youre alone!

Well, this research into the domain of the mathematics of music
began a long time ago, after | happened to go to a mathematics
school. I was terrified because my parents had sent me to study
physics, so scared that in the first semester I wanted to blindly run
away; the first thing that was next door was mathematics. So I just
went in there, and not until much later did I realize how lucky I
had been to have studied mathematics: it helped me sort out
several basic problems of music, until later, when that whole
process got me into geometry - the back door again.
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My methodology is purely mathematical. I have mentioned in the
programme note something about Pythagoras noting ratios first.
There is a dispute about that. I want to straighten the matter a bit.
Pythagoras probably heard things regarding his theory in Egypt.
Conceivably Mesopotamians knew beforehand. There is always an
admiration that comes to us, saying Greece is the place where
Western civilization as we know it was born. And again there is a
dispute, which says: “What did Greece do? It was just a knowledge
transferring station and nothing more than that”. The question
has arisen in my mind and around me too many times, and I think
that I have come to an answer which covers both sides.

Yes, most probably the greatest part of this old knowledge had
been around before. And Pythagoras learned it in Egypt. And it
went there from Mesopotamia, and India was in the game too.
What came about in Greece for the first time was nothing other
than direct democracy. Knowledge became available to whoever
wanted it and whoever was capable for it. So it left closed circles,
to become a generalized and available phenomenon. In order to
accomplish that, Greece had to develop dialectics and theoretical
science. Because you could no longer force upon somebody what
you thought, you couldn’t indoctrinate them, you couldn't mystify
them into beliefs; you had to convince them.

That’s what the focal turning point was in the transition away
from Asia towards Europe. And naturally this bridge theory about
Greece being “between East and West, with one foot here and the
other one there”, is not exactly accurate. Actually Greece is,
figuratively speaking, the narrow point of an hourglass. Flux tends
to happen in one direction, and not in the other.

What happened in the meantime, leading to the present state of
Modern Greece? You know that after this direct democracy era,
there came conquests by empires. After long imperial centuries
there came representative democracies; nothing has been the same
since. Modern Greece has been turned into a by-product of the
West. Having lost the direction of our flux, and having a rather
low profile as a European country besides, we do have serious
problems in facing the new realities; yet we have always been a
country of individuals. Some people, on their own, might still be
continuing ancient ways which are not practised in the West.
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[ would now like to describe the mathematical method in brief.
Mathematics, a typical and unique product of Greek thought, is a
theoretical science which deals in abstraction and structure, by
effecting analysis and synthesis. Now these are two related pairs
of words; they do not exactly coincide, but, roughly speaking, they
correspond to the way you think about something and what you do
with it. I will try to explain these terms - maybe very briefly?....

Abstraction is a discipline whereby you try to isolate constituent
features and to form categories.You look at different objects and
you try to come up mentally with their common qualities, common
identities and fit them into a category. So it leads to categorisation.
But in order to attain that, you need to use analysis, because you
have to isolate features, break things up. Moving further along,
synthesis and structure are related, because the road taken goes
back to look at the products of this isolation process, to finish by
rebuilding them in new combinations. Of course there is a little bit
of analysis in structure and synthesis in abstraction.

But the paramount feature of mathematics (and thats where it
sharply contrasts with physics) is this: the supreme and only basic
laws are the basic axioms of logic. And elementary logic is
what we call “statement calculus”. These axioms formulate ideas like
self-identity, identity to entities other than the self, freedom from
contradiction and the rules of derivation. Now these can be
extended up through generalization and specification towards
logics of different levels in nested layers. After statement calculus
you have logic of order 1, of order 2 etc. like the shells of an onion.

This was not completely settled in people’s minds until fairly
recently. Objections, contradictions and paradoxes kept coming
till Goedel, in 1936, showed the nestedness of generalizations and
isolations of one case from a general situation. That is what
literally saved mathematics as a science. Because with the
paradoxes of Russell and Whitehead things had started going down
the drain. Something very strong had to come. The pity about
twentieth century thought is that it has tried to stifle and suffocate
mathematics. One established way of attempting that is to group
it with positive sciences in the same University Schools. You have
physics, mathematics and chemistry taught together. And this
makes no sense for a discipline as purely theoretical as that.

4 The Ratio Symposium



The result is that now mathematicians are stuck with the role of
providing mathematical methods to physicists doing work in
theoretical physics. And I think it will make very much sense to
you to that is a violation of the very nature of things. Mathematics
is a science of the mind. You may indeed start from a stimulus. You
get your stimulus no matter how; it doesn’t matter. That fertilizes
your brain. You forget about your stimulus and all it boils down to
is an abstract principle in your mind. Then you may start trying to
build a theory. And, if you want, you can even set axioms.

Now axioms are not an imposition of anything upon anything;
instead, they are the quintescence of the guarantee of free will. No
one is forced to accept them. People accept them if they want; if
they don't want them, they can drop them or change them. There
is an additional fact about axioms, which makes them free-will
tools: They apply to nothing, to nothing tangible that is. Nobody
has anything to gain or profit by them, except maybe power.

Well, generally that doesn’t seem to be very threatening, so people
usually get away with putting down whatever axioms they wish.
Or, if they don't want to set any axioms, they just start out from
an already known set of axioms or a proven fundamental theorem.
Making assumptions is the only thing ruled out.

But then you might ask, as we are always asked in this century
(that question would never be asked in the nineteenth century):
“How does this apply to the real world?” In the nineteenth century
they knew that a mathematician was someone up in the clouds.
Well it can apply in the following sense: If some thinking entity,
which might be your brain, or somebody else’s, or of a group of
people, takes your basis - the axioms or the theorems - and
somehow comes to the belief that they are applicable to a
real-world phenomenon, they will have to take up your already
finished product, go from beginning to end, adopt your fully
developed and proven theory - the complete structure - apply it
and see what happens.

Following that, experience through the ages has shown the
mathematical models to work just fine in the real world, although
they were not made for the real world. For example, Pythagoras
laid down the small numbers law, which is a predecessor of
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Fourier’s theorem. Of course Fourier’s theorem is proved in a
much fancier way. How did he come to that? He observed the
sonic behaviour of good musicians of his time, free from any
pre-conceived fixed ideas - or the Egyptians told him about it. In
mathematics the real world comes in at the very last stage, if at
all. And to do that is a task of applied science.

Summing up, what the science of mathematics does not do is start
from the real world. That is the wrong direction. It does not try to
reach a theoretical model from facts, driving its way towards
principles. Of course this is the methodology of experimental and
observational exact sciences, like physics, chemistry and
astronomy and, to a lesser extent biological and behavioural
sciences - like biology, psychology, sociology, economics. So
mathematics just goes the opposite direction of all those.

In these cases, chances are that mathematicians have somewhere,
sometime, put down an axiomatic theory that fits the case better
than any model built by empirical or behavioural scientists
themselves in the other direction.

Of course there are theoretical physics and chemistry. The
difference between experimental and theoretical physics is related
to mathematics. Experimental physics will recognize similarities
to extant mathematical models from the symptoms - real world
situations and how they agree with the finished product in
mathematical theory. On the other hand, theoretical physics will
tackle observations by attempting to construct mathematical
models, formulating principles that resemble axioms and
fundamental theorems of a mathematical theory.

The twentieth century, as | have said, has witnessed a retreating
tendency in mathematics as regards new theories. That is a fact
that, if applied to historical experience, will show that positive
science is on the verge of collapse. What’s funnier is that it is a
self-inflicted collapse. Physics has tried to push mathamatics aside.
Mathematicians don't produce any more new theories. Physicists
have no new theories to work with. They make their own
concoctions of older theorems, aiming at corrections of formulae,
building their own way so to speak. Naturally that will lead
theoretical science nowhere.
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The general conclusion of this outlook is that there are two
approaches: “theory precedes fact” versus “theory follows fact”.
And mathematics is “theory precedes fact”. If anybody, during the
question period, wants to know why, I'll be happy to respond.

Departing from that, I shall now go into the field aspect of music,
the real-world aspect of music. Let’s try to see how musicologists
work; and show once again how the mathematical model would go
the other way.

We have an auditory experience - we hear things. We decide what
we like. We take into account cultural tendency and things like
that. That is a mental process possibly not too well-defined. But,
when ethnomusicologists go out to collect and formulate theories,
they of course feel they have to be more exact in their
methodology. What they do is: They take samples - they go round
the country asking who is a musician, who is not? They record.
They put sonometry to effect. They write down models, theories,
hypotheses and so on. If the sampling were done on a randon
sample of the population, you would get your probably average
musical talent. And your average musical talent from the general
population is not what we usually call a musical talent.

If you have to choose a more specialized sample - and that’s
bordering on an area of statistics called “sampling”, you ought to
have a criterion of how to pick your sample - how to pick the
musicians that will record for you for example. And what enters
into selecting from the general sample? Tastes, points of view (of
yourself, of the cultural milieu where you are operating etc.). In
statistics that will invariably bring about a skewed or prejudiced
distribution. If you don’t go that way, then you have your average
citizen and his musical talent, which is of no importance.

So, anyway, whatever you do, you employ criteria, you set
priorities. You choose your target population, when you don’t
know what variations or what changes through time there are or
have been. But you have to come up with theories for that. You
may revert to old recordings, yet you dont really know who had
had access to the recording process, who collected or arranged for
those old recordings, why and so on.
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So really your “scientific” process is subjective from the first stage
to the last - no matter if an ethnomusicologist will then write a
paper in which the views expressed will exhibit a mathematical
methodology or whatever, appearing systematic and objective. It's
subjective from A to Z.

It also depends on what professor does it, in what academy he does
it, what tendency there is in that place, what mathematics are used
to place samples on an arithmetical model, how you look at
pre-existent documents and why. Suppose your example is good
enough. What do you do about intervals that are very close? Do
you take a mean and variance? Do you express your interval in
cents, Hertz and so on? With what margins of error tolerance?
How do you go about error theory? How can you define a variance
on the general population, as your variance comes from a specific
skewed sample? And how about a value that is quite outside your
normal distribution? Is it an error or is it a stroke of creative
genius?

So that is why some of us are now trying over again to do it the
other way, through mathematics. That is the way our ancestors
did it. And I sense that in Greece our effort to build a new
approach will soon lead us successfully to some sort of national
specialty. Like moussaka!

Our first shot is to try to come up with a definition for music. And
then see what might apply to it from the extant theories. It might
well be number theory and rational numbers. We do think that’s a
good starting point. Then one goes into fundamental questions as
to: what are rational numbers? What are natural numbers? Are
there any irrational numbers? What are the laws governing
numbers? And so on.

But that is all from a number-theoretical point if view. If later we
were to find out that it fits music, that would be good enough. Yet
if it didnt, it would still be ok : we'd have got a lovely theory.

Periodicity comes in, and the question is why we prefer periodic
sounds. Why notes are predominantly periodic, why rhythms are
of a periodic nature. There are arguments on this. There is an
ontological argument, which says we prefer periodicity because
we are products of periodicity. I was going to talk about these
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stellar magnitudes, about these asteroid belts and these rings of
Saturn, but to my amazement my predecessor went through the
whole thing very adequately. So I'll skip that. But there is this
periodic aspect governing stellar bodies, and then ourselves, our
molecules and our atoms and our chemical bonds. They are all
products of periodicities. So maybe by looking for periodicity we
are looking towards that fundamental law of shaping the universe
which has shaped us. That’s an ontological argument; it sounds like
an argument for the existence of God.

Then there is an aesthetic argument, which touches upon linearity
and logarithms; I don't want to go into that. And then there is a
perceptual argument, saying that the ear’s setup is logarithmic,
basillar membrane and the rest. Mathematicians would leave that
for the end. They would develop the whole model, then see how it
applies to the ear and adjust or modify the model at the far end.

If we have a closer look, the ear is a biological tool. To tell us
what? To tell us who the predator is, what the prey is. What the
direction of the sound coming from the predator or the prey. And
what kind of space we are in and how we can get there, or how
we can get away from there. That’s the biological side of things,
focused on spatial resonance.

But then again, when we come to the question of order, we have
to ask the following: Fourier’s theorem implies linear algebraic
compositions. On the other hand there is the logarithmic scale,
typical of methods of fitting more information in a limited space.
It’'s as if the designer of the inner ear knew his mathematics very
well. The perceptive organ is logarithmic. But simultaneous
sounding of logarithmically connected sonic data clashes with the
linearity of their algebraic composition. You have an interval here
(high) and the same interval down there (low) which is perceived
as the same; however the rate of beats is different. So theyTe not
really perceived as identical. This cognitive clash is a disagreement
detected, and the ear is very sensitive to that. Futhermore it’s
probably very sensitive because at one time it had to tell you
whether there was one wolf or three wolves coming against you.
Or whether it wasn't a wolf, but a rock rolling down the cliff. Or
whether it was a rabbit you could go kill and eat.
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The ear is very sensitive to the clashing of linearity and
logarithmicity. And that is where order is broken. So, in order to
restore order, you have to pick out one of these things; to make
one predominate. And actually that’s another very probable reason
why weTe attracted to periodic sounds; because there disorder
recedes. While if we follow the logarithmic path, we just get beats
all over the place. It can be no coincidence that besides being
capable of creating all kinds of noises by their motion, animals -
amongst which human beings - have developed specialized means
of emanating sound, of a linear spectrum this time: their voices.
This spells order and, beyond that, it spells identity.

Identification comes through the specifics of order, and that leads
us to the harmonic series and her ratios. Once the musicologist
utters — articulates — the word “ratios”, he is in the domain of
mathematics. And if he indeed is in the domain of mathematics (I'm
sorry to have to say that), he ought to develop his mathematical
structure now starting over again in the right direction from
axioms. If he does not, then he may be lost, erratic, intuitive and
so on and so forth; but not systematic at any rate. If he does, he
ends up having done the work twice: he has gone from the real
world to axioms, then back to the real world. Whereas doing it
mathematically saves you one way, it saves you half your time -
it’'s much more economical.

There is a general question about why do it mathematically.
Nobody is obliged to go at that; one just chooses to. All I'm saying
that is if you are a mathematician, you do it that way - that’s it!

The set of rational intervals is the same as the set of rational
numbers, which is a countably infinite set. That leads to the
inductive method of analysis, which was put down theoretically by
Aristotle. It was further developed by others in mathematical logic
and it gave the frame Goedel worked in. The inductive method
constitutes a general shape of sweeping through several distinct
elements of a set, one after the other. You need a first element and
a general inductive method of going from an element to the one
next. Then as an illustration you might want to put down the first
elements, look closely and conceive the feeling of a valid set of
results - as many as you wish.
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You have your inductive method, so you know what happens ad
infinitum, without actually having to go to infinity to find out. In
mathematics there is a set of axioms called “Peano’s number
theory axioms”, yielding the natural number set. Of course natural
numbers go 1,2,3,4,5,6,7, and so on. What about rational numbers?
Can you write them all down? Which would be a complete
enumeration of all rational intervals in music? Well, certainly you
can do it, and this is the method (draws on board) - You start with
1/1. There you have a numerator and denominator. You increase
your numerator by one, and then go through all denominators
from 1 up to your numerator. If you come to a fraction which you
can simplify, you drop it, because you already have it written
down. Here’s how you go: Write

2/1. (Drop 2/2 which is the same as 1/1). Then you write

3/1, 3/2 (3/3 you have again as 1/1). And then

4/1; (4/2 you have as 2/1); Then

4/3, 5/1, 5/2, 5/3, 5/4, 6/1, (going on a bit further)

6/5, 7/1, 7/2, 7/3, 7/4, 7/5, 7/6 and so on. In this way you can

write down all rational intervals - all rational numbers.

At this pont we come to the question of primes. What do you do
about primes? Prime-friendliness, and what’s the other one
prime-hostility? In number theory you don’t have the right to do
that. You have no right to discriminate against certain natural
numbers, because its an inductive set and anything is as good as
anything else. We have a very strong feeling in mathematics as to
the equality of natural numbers. So we cannot play certain tricks
mathematically, we are not allowed, whether it is fascinating or
not. But we can define sub-structures relating to prime numbers.

I'm going to give you an example of how you can classify elements
of a set in a number of ways. Each classification will give you a
different method of looking at them. There are varied criteria. One
criterion is the “class” of an interval, namely the difference
between numerator and denominator. 2/1 is superparticular: the
difference is 1. 3/2 is superparticular and so are 4/3, 5/4, 6/5. But
3/1 will be of order 2 - right! 3-1is 2. If you want to get musical
besides all that, you can look at what octave each ratio is. Which
means what powers of 2 it lies between. For another criterion yet,
you reverse this super-particularity; you look towards the
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difference between the numerator and the next octave. That is
what we would call “leading tendency”. There are all kinds of
numerical tendencies definable within number theory. Still another
one is whether the interval is “erect” or not, resting upon what
power of 2 factors out in the numerator or denominator. It was
something you mentioned (to Clarence Barlow); you didn’t say it in so
many words but it was there. And another really big one is “prime
number system”.

Now here is an interesting way of layering ratios. Your largest
prime factor suggests a concept called “intervallic systems”

Sl is the “Tautophonous System”, having only the unison.
S2 would be the “Cyclic System”, comprising the octaves.
S3 would be the “Pythagorean System”.

S5 would be the “Natural System”.

S7 would be the “Septimal System”.

S11 would be the “Ptolemaic System”.

S13, S17 and so on.

Now what gives us the right to do that? Because you have to have
a right to do anything. What happens inside these systems? Well
that’s a very good and interesting question.

It leads to intonation. Fine, we know that - different systems of
intonation; which, I must warn you, if built mathematically, may
come out quite different from those we are used to getting from
experience. They may come out much more complete, because
they are built from the top.

Suppose you want to set up an intonation. If you start out with a
set of intervals which are in a certain system, and you start fusing
them, tearing them apart, taking ratios of ratios and so on, you
will come to the realization of the closedness of this set with
respect to multiplication and division. No matter what you do, you
are always in the same system. That is exactly the mechanism
giving you a mathematical right to create sub-structures, which
are very mathematically organized. And there you will undoubtedly
perceive a correlation with the real world’s intonations. But
ultimately why do we create intonations?
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The answer to that question might be related to the aversion of
human beings to infinity, and the marked tendency to concentrate
on, learn and use concrete tangible mental objects. Which is
equivalent to the search of mechanisms of disciplined self-
limitation.

A second question might be asked as to the benefits of ideas that
follow the other route, namely the logarithmic one.

That is basically a method approaching intervals not by way of
their numerical features, but by their size. And, mind you, the two
methods are not equivalent, complementary, interchangeable or
anything of the sort; they are the opposites of each other. The
former belongs to theory, while the latter falls under applied
science and intuitive perception.

The most important function of logarithmicity is indeed to
compare sizes of intervals; and that would be where
approximations come in. Why does practice favour approximative
intonations? Reasons of economy are usually mentioned. Suppose
we have a a standing polychord. Then a lattice of relations of its
elements to one another is formed. And you know that the greater
the number of notes the more the number of relations in the
Gestalt booms. And so sometimes in order to deal with periodicity
we go to ratios, while in order to deal with logarithmicity we go to
affinities of intervals. These are two sides that are not
mathematically related.

But if you want to deal with both of them, you just have to come
up with your own intuitive formula of how you can compensate
between the two, deciding which is more important and which less
important. I heard something like that mentioned in the previous
lecture again. That would not be mathematical. Mind you, it’s
non-mathematical, but not wrong; it's one of the choices left open
by mathematics.

Now we can proceed to approximative intonations. They are
usually expressed by temperaments, and a lot has been said about
those. That’s something that can go on for ever. I've written a
paper on the matter, which hasn't been published; it's part of my
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dissertation - and then I wrote another paper on the same subject
through different methods with people from the University of
Thessaloniki. The essence is that we are advocating the division of
the octave by 612. Everybody asks why. I have a whole paper here
on why 612. We believe that 612 is a very good division of the
octave. Much much much better than 1200, which is a larger
number. It may sound like a lot with respect to 53, but with
respect to 1200 cents it’s much cheaper to produce.

Now, may | please go into the real world. Covering successive
prime number systems, by following the ascending order of prime
numbers, we have observed that this specific approach to the
development of practical intervallics, beyond other things, traces
the history of music quite faithfully. We think. Not that it matters.
But it is satisfactory. And if you follow that method very
rigorously, it will lead you to interpretations and rationales as to
the development of musical civilisations, musical cultures,
differentiations within them - and traceable styles; whether they
do come from theoretical considerations or whether they can be
correlated to auditory perception; it is theoretically indifferent.

Another observation is that certain, if not most, if not all cultures
exhibit a theoretical and auditory conservatism. That is usually and
generally a barrier to the transcension to an upper system. You
have your set of intervals, and then you feel you want more
intervals. If you attempt it within a certain system, creating
nested layered sub-structures of interior intervallic multitudes
within a system, at some time you go so complicated that you have
to break through your system. It would be done spontaneously,
were it not for the conservatism of musicians and academies; they
are capable of trying any means to hold you back.

When the pressure becomes very strong in that direction, maybe
the situation will forcibly open up for a breakthrough to higher
systems. But going to higher systems inflicts having to start from
scratch. You have to throw away everything else you had your
hands on before, and start building your intervallics from the very
beginning again: a transition from Pythagorean to Just Intonation
will compel you to rebuild your construction forgetting about the
major tone. This tone will crop up in the new structure - if it does
— through totally new mechanisms and for totally fresh reasons.
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Notes in scales serve both melodic and harmonic purposes. If a
scale is built by harmonic criteria, then the relations among notes
will be coincidental; they will be secondary. But you dont want
them to be just any old shoe, you want them to be rather nice,
something you can work with. So you may add melodic criteria to
building scales, running the risk of throwing harmony down the
drain. There, again, one must decide for oneself: what is more
important? These shades of choices will undoubtedly account for
differences in styles. But if you do not realize what system you are
in, also being a conservative on top of all that, then you might get
into terrible deadlocks.

For example you hear all over the place that Asian music is
monophonic. Well, my foot it is! Take a melody and a drone. What
is that? In a certain sense it is one-voice writing, in another sense
it's two-voice writing. This drone (on board) is either a trivial
melody or a trivial chord. Tackling it from different angles you
come to different realizations and hence to different practical
results. Yet these different ways of looking at it are theoretically
interchangeable. For example if you move the drone very slowly, it
may be serving a harmonic function as in Byzantine music (which
is thus clearly not homophonic, but harmonized). Or, if you go to
the West, its melodic nature may be more prevalent. It may well
be a cantus firmus.

Then in one case you could be talking about melody and
accompaniment, in the other case you might be talking of
counterpoint.

These alternative views have a lot to do with instruments, but I
dont have the time to go into how we classify instruments. I'll
come to a slightly different point immediately.

The West has chosen for herself a rather gross temperament - by
12 -, which I understand was a demand of instrument makers in
Germany of the 1700%s. That’s not applicable any more - weTe not
Germans of the 1700s and our technology is not that technology;
it's way past that stage. But a feeling has been built that the
tempered semitone is the rule of everything. So if anything is less
or more than a number of tempered semitones, then we call it a
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“micro-interval”’. We've got to get rid of that terminology. Because
what we call “micro-intervals” are real intervals; intervals that
make sense. And we don't call “micro-intervals” exactly what
doesn’t make sense.

The result of this semitonal temperament is that a set of crucial
intervals has been disregarded. And those intervals I shall write
down as (on board) sigma (o), zeta (Q), kappa (x), capital pi kappa (IIx)
and capital zeta (Z). The schisma, the diaschisma, the comma, the
Pythagorean comma and the great diaschisma. Other writers have
other terms for them. These are reduced to zilch! Then you have
this set of intervals: The diesis, the limma, the great diesis, the
semitone, the apotome and the great limma. If anybody wants, I
can give you the ratios, but I dont think I have time!

Now these are assimilated to something somewhere in between a
limma and an apotome. Then the double diesis, the grave tone and
the diminished third are swallowed by the tone. Furthermore the
augmented tone and minor third are absorbed by the trisemitone,
32/27. Here’s really what we have in the tempered scale: it’s not
the just minor third, its the trisemitone. And then the just major
third vanishes within the ditone.

The differences in functionality can be preserved throughout,
(bearing certain approaches in mind - and those approaches are of
course very inaccurate), but grouping together so many intervals
and functions in the same pot will unilaterally lead to the downfall
of their differentiation.

There is another interesting fact underlining the Pythagoricity of
this 12-tone temperament. It is not only limited to the quality of
approximations, but it is brought to a conclusion by the
assimilation of the two tones to each other. In which case, natural
diatonic scales are approached via two sizes of intervals rather
than three: 5 tempered tones and 2 semitones. And this formation
is a purely Pythagoric specialty, I must add here. The same
Pythagoric deviation had previously struck Western music even at
a time of manic tendency towards natural/just systems. In
Renaissance and in the Baroque, people wanted perfect thirds.
They even deformed fifths terribly, in order to get just thirds.
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Then, all of a sudden, having got a just major third, they cut it
down into two equal “mean” tones, which would give them again
two sizes of intervals in the scale. They went through so much
trouble to create something that was closer to just intonation, and
immediately they ruined it by making it ideologically Pythagoric -
because they thought they wanted two sizes of intervals. That
blew the whole thing apart and created so many problems.

If you go now to Byzantium, and to Islam, you’ll find they don’t
suffer from such confusions; because they learn to hear better and
dont disregard anything but the very small intervals not even
audible. That might sound OK - well it ain't! Try the diaschisma,
which is a just step. The diaschisma is something between the
augmented fourth and the diminished fifth. It's about 19.5 cents.
Now that is nominally a step, because it goes from F#& which is a
fourth degree, to Gb, which is a fifth degree. You can't confuse that
with the comma, being a just lever of acuteness or graveness
without changing step. You stay on the same degree of the scale if
you move by a comma. As far as the Pythagorean comma is
concerned: you move a Pythagorean comma up, you go one degree
down. It's an inverse step. Differences of size are minute, but
theoretically they are worlds apart. Were we to confuse these
three, we would get our dynamics all wrong.

The next confusion comes up around the limma (on board). The
limma and the great diesis appear interchangeable in these
cultures. And then you have the apotome - which is, as far as I'm
concerned, a very stupid limmatic interval, because it’'s a left-over
of a left-over of a left-over. They confuse it with the semitone. In
which case you find Byzantine and many Islamic cultures splitting
a tone by an apotome and a limma, when the whole milieu is just
intonation; when they have perfect thirds and so on. That is
mathematically deplorable.

But when you apply to the real world, do you know what happens?
A structure like that will not allow you any step in the size-area
of 4 commas within a just environment. That demonstrates the
major differences stemming from the use of a mathematical
perspective on elements that are not audibly differentiated. There
is no such thing, in a natural environment, as a limma step. There
is no such thing, in a Pythagoric environment, as an apotome step.
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So, really, when you go down to your modes, it starts making a
difference. What you have to do is: either go back Pythagoric and
have your tones and limmas, or you go to a just environment,
which is different - built differently from the ground. Its a
building next door! And there you are not allowed limmas or
apotomes; because the whole logic of your present material gives
you much better solutions than that, through tones, grave tones
and semitones. Now that is an indication of what your mathematics
does for you. I think I ought to mention that we in Greece have
been trying to develop our thinking and take it from beginning to
end, relying on a good solid mathematical base. And we have also
tried to compose music on it. So we have actually started
composing septimal music.

As far as we are concerned, it comes out quite ok. I have here, if
anybody wants to look at them, amazing lists of tetrachords. Just
any number of tetrachords. If you look at them like this you might
get lost. If you follow their ordering and rationale, they make
sense. FEach tetrachord goes in its right place according to the
functions it is called upon to fulfill

Beside all else, we are also trying to check up on the theory of our
traditional music. That is a task that will be completed soon. What
we have to face regarding ancient Greek music is a dispute about
how the language was pronounced, how the meter went and what
the intervals were. The last is largely due to the intervallic war of
antiquity: between the Pythagorean and Aristoxenic schools. They
could never get the two things together. That is probably why
Pythagorean - being stronger socially and as a doctrine - attained
a general acceptance in the modern world, distorting everything in
its way. Even to modern European and Arabic music. It’s just done
terrible damage. There we are then, still thinking Pythagorean,
still thinking apotomes and so on.

We want to clarify all that. We want to set our structures straight.
I'm going to stop in one minute, after saying that the Byzantine
side is also a mess, because that is where many different theories
have been and still are tried, coming from various sides: from the
East, from the West and so on. If you read up on what writers
have been writing about Byzantine intervallics, you'll go crazy.
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You will be confronted by five, ten different points of view. Five or
ten incongruous intervallic setups. Chrysanthus himself gives two
of them. He postulates a numerical aspect and then he divides his
octave into 68. However 68 does not fit his own numerical
intervallic structures. It turns out that what fits his diatonic
structure — alone - is 72. Then the Patriachal Commission, in 1881,
comes in and says: “OK, we’ll give you not 68, or 64 (which was
the number he had given for chromatic modes); we'll give you 72",
In the meantime they themselves give another set of intervallic
ratios, for which 72 is no longer good. Their set now needed 53,
because the Patriachal Commission’s numbers were in
unadulterated Just Intonation.

On the other hand, the way they came up with intervals was
acoustical: they gathered several cantors and made them listen to
proposed intervals, until sometime the Cantors would say: “About
there sounds ok”. That was done in the last century, and it proves
that the ratios they gave were arbitrarily selected and imposed,
indeed in application of Rameau’s method. They may sound as close
to anything as desired, but where structural considerations
depending on theoretical importances of inaudible differences are
concerned, we are stuck with worthless speculation. As I said, I'm
going to be working on that soon, and that is one of the reasons
why Prof. Amargianakis eagerly accepted me as his doctoral
student.

Our folk music is also very varied. We have been collecting,
listening and sometimes trying to come up with mathematical
renditions. I have personally re-done folk material for the public.
And I must say that there the response was unanimously fantastic.
Whenever I played songs, mathematically restituted, in concerts to
their natural public, often to simple people, the responses we got
were of the type: “My God, how did all this emotion and feeling
come back to these songs? It had been lost for six years.”

Wouter Swets: Where did you get the musicians to perform that
according to your....

DEL : In Athens.
WS: But how can they do that?
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DEL: I don't know how they can do it. But the thing is I wrote the
scores out in four different notations. I got people who didnt
rehearse together. I get them together to play in a concert and
they all play the same thing - and the public goes crazy! Old people
who had lost track of these songs and their emotion since the
twenties. Which was rewarding - and fun of course. The other
thing that was fun was when people gave us versions of songs -
remembering them in haphazard ways - not knowing what the
songs were exactly like. Id sit down, do a mathematical
reconstruction of the song - and finally it would be played back to
the people who had taught it to us. And theyd say “Yes, you are
right, that’s what it sounds like. I didn't remember it correctly, but
now that I'm hearing it, that’s it!”

WS: Could you give an example of a folk song which used to have
certain intervals you have replaced here?

DEL : We never occupied ourselves with what it was or what it was
thought to be. What we did is we got an approximate idea of the
intervals, given a wide tolerance of error, and we tried to come up
with a mathematical structure that fits that certain melodic
behaviour. That certain wide margin of error of the intervals and
the behaviour of the melody.

WS : But how, for example, you can be so against an apotome
(which is 2187:2048) and like so much 16:15 when the difference is
only 2 cents? And now you say there is room for tolerance. What
is 2 cents in God’s name?

DEL: 2 cents is a schisma.

WS: If we speak about tolerance in performance. What does your
system mean? | believe you if there was a beautiful performance.
But what [ want to know is what exactly - what kind of intervals
they used - which made it so beautiful. Or was it just a kind of
psychosis of people who heard something about the new system,
and now this must be wonderful?

DEL: Oh no no, as I said, it was the general public that attended, not
musicologists. It was a concert given in a concert hall. They didn’t
have any psychosis about whatever stupid thing I was doing, they
couldn’t care less. It would take me much time to answer that.
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1 Editor's Note: here is a ratio list of the more basic of these intervals
arranged in order of size -

schisma 32768 : 32805 1.95 cents
comma 80: 81 21.5 cents
Pythagorean comma 524288: 531441 23.5 cents
dieses 125: 128 41.1 cents
limma 243: 256 90.2 cents
great dieses 625: 648 62.6 cents
apotome 2048: 2187  113.7 cents
tone 8:9 203.9 cents
diminished third 225:256 223.5 cents
augmented tone 64:75 274.6 cents
trisemitone 27:32 2941 cents
minor third 5:6 315.6 cents
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Monday 12:15
Ann La Berge
Mongrel Tuning: The Temperamental Flute

I'm going to speak about a collaboration between flutist/composer
John Fonville' and I which was started in the mid 1980%. Both of us
are tuning buffs and we enjoyed experimenting with tuning even
before we met each other. During my stay in San Diego at UCSD,
we played together a lot, mostly improvising at first, and then
working towards hearing and playing in extended just intonation.
We also worked out sets of fingerings for different non-just
temperaments, including the 19 tone per octave scale, a tuning that
people have been experimenting with for a long time? This scale
is specifically not intended to be in extended just intonation. And
when we played in this tuning by using this “unnatural” scale we
tried make the beating (that was appropriate for some of the
intervals) predictable and obvious.

One aim of our project was to make a clear distinction between
playing in just intonation and playing in another type of tuning (or
temperament). After a year or so of improvising together, a music
using a temperamental system of intonation (or de-intonation) was
developed. It now consists of three pieces; one written by me
(unengraced), one written by John (the Mong Songs), and one
written by David Dramm (by).

To find non-standard fingerings on the flute which would work for
a temperament other than the conventional 12-tones per octave is
relatively simple. The concept is similar to that used in baroque
flute or recorder, where cross fingerings or half-hole coverings to
raise or lower pitches are used. By using a set of fingerings to
produce the pitches, rather than depending on the flexibility of our
lips, we could actually, and relatively confidently, play this 19 tone
scale. But, of course, because it is manifested on an acoustic
instrument built for conventional 12-tone temperaments, each note
had a slightly (and sometimes extremely) different timbre.
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This collection of timbres which spans the three octaves of the
flute offers much more complex sounds than the same collection
played on most synthesizers. The flute is actually a very elegant
instrument. It’s just a cylindrical tube, although it has a little bit of
a conical shape in the bore of the headjoint to make the third
octave somewhat smoother. I like to think of it as a compact pipe
organ - basically: the shorter the tube the higher the pitch, and
thus the longer the tube, the lower the pitch. Because the
conventional flute tone has been analysed to be very close to a sine
wave (especially from performers who play with a boring sound,;
no pun intended!), it is usually very easy to hear the fundamental
of whatever pitch is being played.

A trend which has gained popularity in the last ten years is a flute
tone which has the possibility to include more of the higher
partials than just the simple sine-wave tone that we all read about
in acoustic books. In fact, for tone colour variations and for certain
kinds of intonation inflections it's necessary to emphasize different
partials at different times. A flute which can handle this kind of
timbral flexibility has specific measurements in the cutting of the
head joint, and specific relationships between the tone holes in the
body of the flute, making intonation much better than the flutes
from before 1975 or so.

For example: I'll play a chromatic 12-tone scale (plays). As you can
see, | just lift up my fingers to shorten the tube and the pitches get
higher. The second octave is overblown to get the second partials
of each note. Now, the third octave combines two harmonic series.
Once we get beyond 1) simply “fingering up the tube”, 2) blowing
the second partial and fingering up the tube, we have to use a
more complicated combination of harmonics and fingerings.

So, the third octave is not just overblowing (demonstrates
overblowing to play the first two partials simultaneously; plays multiphonics
using third octave fingerings). In some ways the multiphonics and
double octaves which I have just played are much more interesting
to me as a flute player. It opens up a harmonic world that
supposedly we flutists never had, although in some non-western
cultures we have always had.
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Now, as you can see, the flute tone (in my mind) is a sonority. It's
not just a single, isolated tone. If I want to play loudly or softly, or
change the color of a timbre (plays) I'm also adding and subtracting
harmonics. By combining two flute players at once that enjoy this
kind sound production the sonorities that are produced in duo
playing sound very well tuned or in some cases, powerfully out of
tune. Except for a couple of fingerings the 19-tone scale, that John
Fonville and I used, is made up of non-standard fingerings, and
thus non-conventional timbres. In essence, we refingered the
traditional classical twentieth century flute. Due to the nature of
the acoustics on the flute, it was necessary fingered each octave
differently, although there are a few notes which are the same in
the first two octaves. We were both playing with the same brand
of flute (almost), so that we knew the timbres of individual notes
would be somewhat similar. [t may seem unlikely, but its true that
every flute is different.

If its a hand made flute, or if its a factory assembly line flute,
there are certain subtleties which give a flute an individual
character. Plus, everyone produces a sound differently. So the 19
tone scale that appeared, mostly through John’s intense
experimentation and my commentary, starts on F with a standard
F fingering (plays). Maybe it starts on F because Fonville helped
develop it... And this is what it sounds like (plays). This is F in the
first octave. You see I can’t overblow the second octave because
['ve cross-fingered everything so peculiarly in the first that the
overblown notes for each pitch are not necessarily an octave. Thus
the same fingerings in the second octave don't work. As a result,
the second octave is another set of fingerings for the most part
(plays). There’s the second octave F again - going on (plays).

[ hear these three octaves as a collection of timbres and through
that sort of orientation to the pitch material, we started make a
music for our duo. John and I were at that time very active as
improvisers. So what came out of our collaboration was a style of
making music from an intuitive in addition to a more objective
structural process. I would like to add that the F-19 is an octave
divided into 19 equal intervals of 63 cents each. Of course, on the
flute, the intervals were not always exact, but because the tuning
offers some nice 3rds and a really nice 5th we would sometimes
gravitate towards just Sths and 3rds, although we made a point of
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trying to replicate the F-19 tempered intervals as precisely as
possible. Another way we used the sonorous depth of the scale was
to overblow or underblow the notes and obtain even more unusual
timbres or, in extreme cases, multiphonics (demonstrates).

I will play you an example of a synthesizer playing (19-tone)
retuned versions of cadences from the chorales in J. S. Bach’s St.
Mathew Passion (plays recording).

[ wrote a piece for flute and synthesizers using this as basic
material for the harmonic language. The piece didn't work out as I
wished, mainly because the complex timbral interplay that I was
used to was lost by using the synthesizers. But, [ must say, as a
flautist its really no fun to play with an FM synthesizer. Through
various experiences, [ve decided that I need to play with
instruments that can replicate the multiplicity of timbres and noise
that are possible with the flute, especially with this kind of
extended tuning. And, for a synthesizer that is very expensive
sound, and I don’t have that kind of money right now.

I'll play a little bit of our music. The first piece is entitled by
composed by David Dramm. David used the F-19 material less
harmonically than John or I did. His more limited selection of
notes forms a sort of quasi minimal, repetive music (plays
recording). Later in this section more and more notes in the scale
are added which breaks down the “groove” of the repeated pattern.

The next piece is mine. It's entitled unengraced. 1 took mostly
scale passages and extended blowing to create multiphonics. I
structured it by semi-serially organizing material that John and I
would play in our improvisations. (plays recording). As you can hear,
our unisons weren't bad for having to play so many weird
fingerings! As time went on, we developed an ability to hear and
reproduce the subtleties of our tuning. Our rehearsals lasted about
3 hours, and we played together twice a week for a couple of
years, and then once a week in the third year. We also learned that
this music needs to be performed amplified, because the sound
projects much less evenly than the traditional, conventional flute
(plays another section of unengraced).

The next piece is John Fonville's Mong Songs. It has three
movements and only one is in F-19 (plays recording).
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And the last musical example is the third movement of the Mong
Songs called .5; it's not in F-19, but it uses all of the musical ideas I
have spoken of, only it is in another tuning (or rather, collection of
timbres).

[ have to add that as far as future projects in this extended tuning
world for flute are concerned, I now strongly prefer working with
acoustic instruments. The difficulty in this kind of work is to find a
player like John Fonville who invested so many hours to recreate
the flute and then collaborate with me to develop a repertoire for
that new instrument. Not many people will go that far out on a
limb on a new project. I'm ready for questions.

(Audience question): Why F-19, presumably you could take any note?

ALB: You could. I never asked John specifically why F was his
chosen note. I guess it was a handy choice to use a conventionally
fingered note which we could function as a sort of anchor.

Q: Is the flute rebuilt or is it a normal flute?

ALB: No it’s this flute that I am holding. Let me play a section from
John’s .5 so you can see how it would sound live (plays).

Postscript

The flute duos (by, Mong Songs, unengraced) composed by David
Dramm, John Fonville, and Ann La Berge, which emerged from a
period of intense collaboration between flutists John Fonville and
Ann La Berge in the late 1980%, build a repertoire that may never
have a commonly known performance practice attached to it.
When played on the western 20th century flute (built in the 80%),
the idiosyncratic timbral, articulatory, and dynamic mannerisms of
each note of the entire two and a half octaves of this scale makes
each of these works untransposable. By crossbreeding (the
intentions of) mathematical purity of the 19-tone scale with the
sounds which come from such a quirky tuning and timbral world,
the composers impose upon the flutists a necessity to blow and
finger their instruments in a manner which emphasizes the
acoustic differences between each note/fingering in the scale. This
practice of highlighting differences rather than striving for a
homogeneous timbre and resonance throughout the range of their
flutes is one of the distinguishing features of these three pieces.
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1 John Fonville is a professor at the University of California, San Diego.

2 John worked out the original fingerings and I adapted them to my Hute with
consideration for the nuances necessary for my own instrument.
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Monday 15:00
Wim van der Meer
Theory and Practice of Intonation in Hindusthani Music

The other day I was present at a concert of Hariprasad Chaurasia.
As is common in Indian music he started out by tuning the
tanpura, which takes quite a long time - like twenty minutes or so.
He wants it really perfect. And then he says, as he picks up his
bamboo flute, “thank God I don’t have to tune this instrument”.
Now, that is indeed a very nice joke, because the bamboo flute has
seven holes that are more or less equidistant, so you can imagine
how much trouble it is to play that instrument in tune. And I
assure you he is one of the most well attuned musicians in India.
Just to give you an idea of what it sounds like I'll play a small piece
of a relatively unknown but excellent young singer. This raga is in
the Western major scale.

[Music example: Raga Tilak Kamod by Ashwini Bhide]

Indeed, it is often striking that Indian musicians achieve an
uncanny exactness in intonation. We will come back to that in the
course of this talk.

In this small piece you hear the drone. You don’t hear it very
clearly. Its supposed to be soft. You also hear the voice and the
drum, and on top of that you might have heard a small harmonium
that is actually tuned in more or less equal temperament. But that
doesn’t really disturb the Indian musicians so much. It’s also played
softly, and they refer to the tanpura, and in particular of course
the major third is different in one instrument and the other.

Now, before I really go into this subject of how this intonation came
about I want to say one thing which is that people think that a
culture like India’s has undergone very little change over the ages;
that the music is transmitted orally from teacher to student and
that very often the student spends twenty-five years with his
teacher and I mean not just spending in the sense of coming to him
once a week but living with him and assimilating the whole music.
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But you know there are at present approximately fifty ragas that
are really very well known, big ragas, important ragas. There are
surely another two hundred ragas that are reasonably well-known.
Not to everyone, but at least some people know them. There is one
book in which about seven hundred and fifty ragas are discussed.
But in fact ragas are invented everyday and ragas are changed
everyday.

Musicians try all sorts of things all the time, so if you would start
counting the number of ragas that might have been in existence at
any particular moment you are talking about thousands, many
thousands. And theres really a Darwinian process of selection that
goes on.

Its in the first place the musician himself who may say, “Well, |
tried this”. He may have tried it for a few days, he may have tried
it for a few months, or even for a few years, but he may conclude
in the end that it didn’t really work. And in the second place of
course its the audience; and I'm not talking about once or twice,
but its going to take a process of ten years or twenty years that a
certain raga came into being, was played for some time, and then
disappeared again. And how it disappears is not because there is
some committee, or some musicologists who say, “this ragas
wrong”. They have no influence on that. It just didnt work. And
some other ragas have existed already perhaps for the past fifteen
hundred years or so, because the whole raga principle got its main
shape in about the Vth or VIth century AD. Even then ragas that
are that old might have changed in the course of time. So the whole
history of Indian music is very much an evolutionary process of
trial and error. Most probably, various aspects of intonation also
have been subject to this evolutionary process - trying and finding
the best tuned solutions.

Towards the end of this talk I'll come back to that. I'll go first to the
ancient theory of intonation in Indian music.
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Ancient Indian Theory of Intonation

The man who is always cited on this is Bharata, a great scholar of
two thousand years ago, who wrote a treatise on theatre in which
there is an important part devoted to music. He explains different
intervals of music and people have tried to understand his theory. I
think by now there is a kind of general consensus on how it works.

Take his division of the octave in a tuning called Sa grama. He
divided an octave of seven tones into a total of twenty-two shrutis,
which one nowadays knows were not equal in size. He saw that you
can tune perfect fifths (2:3) and perfect fourths (3:4) and if you tune
an instrument (they used harps in those days), you get a problem
with your fifths. Most probably he got that problem because he was
aware of the existence also of the harmonic major third 4:5.

Put simply, he knew the octave, the perfect fifth, the harmonic
major third as primary intervals, derived the fourth as an inverted
fifth, then getting the chatushruti (meaning “four shrutis”) which
is the major whole tone 8:9 (204 cents), the difference between the
fifth and the fourth. Then he recognized another slightly smaller
interval called the trishruti (“three shrutis”), i.e. the minor whole
tone 9:10 (182 cents), the difference between a harmonic major third
and a major tone. Then came the dvishruti (“two shrutis”), the
major semitone 15:16 (112 cents) or the fourth minus the harmonic
major third. He was also aware of the syntonic comma 80:81 (22
cents, the difference between the major and the minor whole
tones), which he called the pramanashruti. Now, by variously
chaining together the dvishruti ([2] below), the trishruti ([3]) and
the chatushruti ([4]), he arrived at the following seven-tone scale!
(European note-names and cent equivalents are given below):

Sa [31 Rel2] ga [41 Ma (4 Pa [31 Dha 2] ni [4 Sa
do 182 re 112 mib 204 fa 204 sol 182 la 112 sib 204 dol

Just add up the shrutis and you’ll see they total twenty-two (the
cents add up to 1200). Note that the perfect fifth is thirteen shrutis,
the fourth is nine. You can also see that the interval Re-Pa (re-sol)
is not a perfect fourth, something he was obviously aware of. What
we are saying is that he somehow understood that the harmonic
major third actually makes a mess of the beautiful system of fifths:
when you tune an instrument you meet that problem naturally.
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General theory of intonation

Let me go back a step here. This will be very much a repetition of
what we saw this morning. [ will first state a

General law of consonance:

Consonance decreases as the fractional relation between
base frequency and the frequency of the related pitch
becomes more complex.

Look now at the following figures:

1:1 1:2 2:3 3:4 3:5 4:5 4:7
I VIII \Y v VI I -—

You see the octave (VIII), fifth (V) and fourth (IV), followed by the
sixth (VI) and third (III). Then you see 4:7 and here comes my first
comment, which is just what Clarence Barlow said this morning:

Comment I :
Prime numbers above 5 aren’t part of a fraction.

Then you can go on and you come here to other known intervals:

5:6 5:8 5:9 3:9 0:10 3:15 0:16 15:16 16:25
iii vi vii II II- VII vii il -

Having eliminated the numbers Clarence eliminated - 7, 11, 13 and
so on, you arrive at 25/16, the next one in line. The 25 also poses a
problem. [To C. Barlow] I don’t know if you would know by heart the
indigestibility factor of 25.

C.Barlow: I think about twelve.

W.vd.Meer: Right, above ten. I'm sure we could easily apply the
formula of Clarence’s lecture this morning. As soon as you have a
25 youre putting thirds together, and thats difficult tuning. If youre
singing, thats really out of the question. This leads to my

Comment 2:
The number 5 doesn’t occur more than once in a fraction.

Thus no compound thirds.
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D.Wolf: Question: are you making a distinction between 25 in
relationship to the tonic? For example if you go from 5:6 over the
tonic to 4:5, youre going 24:25 and that’s quite common.

W.vdMeer: I would say in Indian music its not. And I'm not
eliminating these on the basis of some theory. I'm just going
through all the possible intervals and already indicating which ones
are not used in Indian music.

C.Barlow: I think you'e are talking about the relationship between a
certain tone and the tonic, if I'm not mistaken. But, as Daniel Wolf
says if you have both major and minor thirds you can indeed find
the difference between them forming 24:25, particularly the tonic.

W.v.d.Meer: In that case | agree absolutely.
J. Tenney: The tuning you showed us looks like our minor scale.

W.v.d.Meer: Yes. Thats a minor scale basically, the Sa grama. That’s
what they used as their basic scale. There was another one called
Ma grama, in which the fifth (Pa) was lowered a bit to make it
consonant with the second (Re); if I have time I'll come back to
that. This is a fundamental scale from which, by transposition, all
sorts of other scales were derived with basically seven tones of
course, although later two more tones were added - the major third
and the major seventh, on which basis again new scales were
derived. You finally get quite a complex set of musical scales.

Going on with our intervals we get

16:27 20:27 27:32
VI+ I\%: iii-

which I'll come back to.
Here I'll make another general observation:

Comment 3:
Inverted intervals are more difficult to tune and perform
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[ mean the fifth above the tonic is very easy to produce. A fifth
below the octave is very difficult to produce - it would mean the
fourth. The perfect fourth is really far more difficult than the
perfect fifth. Similarly, the minor sixth is also much more difficult
than the major third. Its very easy to understand why, because
what really happens in this kind of natural tunings is that youre
matching harmonics - the harmonics of the voice with those of the
drone. And, if the harmonics of the drone are kept steady, you
match the harmonics of the voice to them. Its much easier to do
that above the drone than to do the inverted thing. Its like cutting
your hair in a mirror, something like that.

H.Radulescu: Is it because your fourth is nearly your forty-third
harmonic? Its very difficult to control. Its a prime number.

W.vd.Meer: [ wouldn’t say that.
H.Radulescu: But why are primes bigger than 5 forbidden?
W.v.d.Meer: TheyTe just not used in Indian music.

H.Radulescu: But they could come. Between the seventh and sixth is
fantastic. A minor minor seventh, no?

W.v.d.Meer: Oh yes, they could, but they don’t!

Now these are some general outlines that we find in the
interpretation of a natural scale in Indian music. Now here’s my
last comment - I'll have to come back to that in much more detail.

Comment 4: The semitone is an independent interval

The semitone is really an independent interval produced by some
kind of acoustics of the instrument or the voice generating the
melody and the drone. There is something funny going on there
that is not explained in this theory of simple harmonic relations
because we are talking about a strictly complex ratio. I will show
you that the semitones used in Indian music are with great
accuracy and dependability about ninety-five cents. They are
certainly not the 15:16 we commonly find in books. What ratio the
ninety-five cents is, you can figure out for yourself, of course -
extremely complex.
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Indian intonation in contemporary practice

Ex.1 - Average intonation measured for the twelve scale-degrees shown in
circles of fourths and fifths; all values in cents - note names in sargam

Circle of Circle of
FOURTHS FIFTHS
-23 Sa ﬁlo— 0
678 Pa 02— 702
180 Re 204 204
882 Dha 899 906
384 Ga 390 408
1086 Ni 1104 1110
588 Ma 608 612
90 re 94 114
792 dha 801 816
294 ga 304 318
996 ni 1008 1020
498 ma 501 522
| % conta | | | | | | | | | |

Ex.1 shows an ascending cycle of fourths (with Indian note names)
along the left vertical line opposite a descending cycle of fifths on
the right, 23.46 cents (a Pythagorean comma) apart. The diagonal
shows equal temperament, the horizontal lines the pitch spread
(with the mean value centred) of the twelve chromatic notes found
in about two hundred 5- to 15-minute compositions we computer-
processed in the past twelve years. The fifth (Pa) averages at 702
cents, the major second (Re) at 204, beautifully. The major third
(Ga) is a bit high at 390 cents instead of at 386, hardly noticeably.
The major sixth (Dha) is tempered: the major third and the major
whole tone pull on it about equally. The major seventh (Vi) 96 cents
below the octave (Sa’), the augmented fourth (Ma) 94 below the
fifth (Pa), the minor second (re) 94 above the tonic (Sa) all more or
less follow the rule I mentioned that drone centres, here always
tonic and fifth, tend to be flanked by semitones at about 95 cents.
The minor sixth (dha) is interesting, a bit higher than expected (99
cents above Pa) and practically tempered. The minor third (ga) is
relatively well spread; especially the minor seventh (ni) goes really
wild. The perfect fourth (ma) is at 501 cents a bit high, known to
Indian musicians who say this is because musicians are too greedy.
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Ex.2 - Tabulation and evaluation of the findings in Ex.1

Scale-degree Theoretical alternatives Measured
Name Semitones in cents average in cents
with ratio (and derivation) (range and position” in
% of a syntonic comma)
Sa(do) O 0 0
I:1 (37/103)
re (reb) 1 90 112 --schisma-- 114 94
243: 256(I1Vx5) 15:160V-1ID  2048:2187(Vx7) (90/16)
Re (ref) 2 180 --schisma-- 182 204 204
59049:65536(1Vx10) 9:100V+III-V) 8:9(Vx2) (110/102)
ga (mih) 3 294 316 -—schisma-- 318 304
27:32IVx3) 5:6(V-1ID 16384:19683(Vx9) (140/46)
Ga (mif) 4 384 --schisma--386 408 390
6561:8192(1Vx8) 4:5(11D 64:81(Vx4) (110/20)
ma(fal) 5 498 520--schisma-- 522 501
3:4(1V)  20:27(Vx2-TIV-1ID 131072:177147(VxI1) (150/13)
Ma (fa?) 6 588 612 608
729:1024(01Vx6)  512:729(Vx6) (180/84)
Pa(sol) 7 678 702 702
177147:262144(1Vx11) 2:3(V) (40/100)
dha(lab) 8 792 814 --schisma-- 816 801
81:128(1Vx4) 5:8(VIII-IID  4096:6561(Vx8) (120/43)
Dha(lal) 9 882--schisma--884 906 899
19683:32678(1Vx9)  3:5(IV+IID 16: 27(Vx3) (100/69)
ni(sik) 10 996 1018--schisma--1020 1008
9:16(IVx2) 5:9(Vx2-1II)  32768:59049(Vx10) (230/56)
Ni(sit) 11 1086--schisma--1088 1110 1104
2187:4096(1Vx7) 8:15(V+IID) 128: 243(Vx5) (160/71)

* distance from (where schismatically paired next to) lowest shown theoretical value

General observations:

Pa, Re clear preference for high, Ga, ma clear preference for low position
Dha almost tempered, ga, dha and ni also near-tempered

re, Ma, Niapproximately 95 cents from drone centres Sa, Paand Sa’

Note by note:
Sa although properly zero, often corrected in view of the other notes
re easiest place in theory IV-III not used due to absence of IV in drone
Re absolute and stable preference of 8:9 over 9:10 due to Pa tunin
ga tempered between the two theoretical positions, not very stable
Ga clearly naturally harmonic
ma a bit above the inverted fifth, not so stable due to lack of Pa-support
Ma high position
Pa more stable than Sa because Pa is stronger in the tanpura - s. Ex.5
dha tempered between the high VIII-III and its 95¢ct adjacency to Pa
Dha tempered between the low [II+IV and the high VX%
ni tempered between the low [Vx2 and the high Vx2-III
Ni clearly high in spite of the apparently simple low V+III choice
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Ex.2 - continued

Further observations
It could be expected that notes with an easy choice for low or high would
a) follow that choice and b) be quite stable. This is so for Re, Ga and Pa

[t could therefore be expected that notes with two accessible positions
are tempered and unstable - this is the case with ga and ni

The instability of ma, is spite of an easy choice, is due to its lack of
support by the tanpura - inverted harmonic matching is more difficult

The semitones adjacent to Sa and Pa are at a distance of 94-96 cents,
but for dha at 99 cents above Pa, seeming to indicate a phenomenon
unknown in literature

The temperament of Dha indicates balanced consonance with Re and Ga

J. Tenney: So if there were for example in your sample two different
versions of the major sixth, you would lose that distinction by
averaging them out.

W.v.d.Meer: Absolutely. Of course. That is the next question that has
to be raised.

Differentiation of intonation by raga

[ must tell you that after studying the history of Indian music and
discussing with many people this scheme of Bharata in which you
make this distinction between the higher position and the lower
position, a distinction which is discussed very often among Indian
musicologists, (not so much among musicians, as you value), I find
that musicologists like to talk about the high position which is the
bright position of the notes that relates to the day time, and the low
position which is the dark position and relates to the night. You
know; day ragas, night ragas. I must say, about ten or fifteen years
ago, I staunchly believed that somehow some scheme like this was
being followed by Indian musicians. So naturally, when you take
this kind of general average of course it happens that sometimes
musicians take the higher position, and sometimes they will get a
lower position, you will get an average.

So naturally the next thing we did was to see, raga by raga, if one
can find some ragas that really take the high position and some
which take the lower position, because that would be the theory,
originally.
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Ex.3 - Intonation of eleven scale degrees measured for twenty-two ragas
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Ex.3 continued
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Watch these measurements, raga by raga, note by note. The minor
second (re), for example, is found here in eight different ragas. The
measurements speak for themselves - there is hardly anything
significant here. The minor second is generally at 85 to 103 cents,
always lower than the 112-cent 1516. Now in Raga Bhairav its
supposed to be low. Nice. But you can’t say this is significant.

C.Barlow: I remember hearing that the minor second in Raga Marva
ought to be especially high. Isn’t this a general belief?

W.v.d.Meer: Exactly. But it’s not true.
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J. Tenney: How did you measure these intervals?

W.vdMeer: In a minute. Let’s run through a few. An interesting
case to attend to is the major second (Re) ranging in Bhairavi from
194 to 204 cents because both the minor and the major second are
used. There tends to be a little play there; in measuring youre
going to get some variability. For instance, here is one really on the
low side: in Bagesri, a raga in which the drone tuning is not done
with the tonic and the fifth, but the tonic and the fourth. You would
indeed expect it to be a bit low, but again its certainly not the 182
cents (9:10, the minor whole tone) you would theoretically expect.
You see that most of the major seconds are around 204 cents,
though, certainly in the general average. Quite clear cut.

The minor third (ga) is all over the place. Sometimes it doesn’t
even fit on this diagram: it goes from 300 to beyond 325 cents in
Raga Multani. Interesting that in Raga Darbari Kanada, the minor
third is supposed to be very low, and it is significantly higher here
than what we would actually expect - see also Ex.4.

Ex.4 - Measured intonation of the Darbari Kanada minor third as sung by
two prominent singers (about five seconds each)

400
300 - o ANAA h SN, o i
[
200 /
100 k ! /\}
0
cents Singer: Faiyaz Khan Singer: Aminuddin Dagar

The major third (Ga) is also extremely spread out - a problem of
measurement. In Raga Kedar, for instance, the major third is used
very little and therefore isn’t very dependable: measurements get
more dependable if you have really steady notes used regularly in a
performance. You will find large spreads either when the note is
seldom used or if it oscillates strongly which happens in some
cases. Or if both major and minor forms of one note are used. Yet
this is hardly significant. A quick look at some of the others, e.g. the
sixths (dha, Dha) and sevenths (ni, Ni), shows the same story. You
hardly get any significant differences from one raga to another in
intonation. I don’t find it interesting to assess each case separately.
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The seventh harmonic in the tanpura
Here’s a picture thats of some interest - Ex.5:

Ex.5- The cumulative spectrum of a lady’s tanpura in Pa-tuning; Indian
note-names at twelve-tone equal tempered positions

Sa Re Ga ma Pa Dha Ni Sa
2:3
1:1
4:5
8:9 3:15
4:7
8:11
16:21 1?'27
8:13 |

L r|| I Ll miam

Ocents 200 400 800 1000 1200

This is a tanpura spectrum. You see very clearly the fifth (2:3) even
stronger than the tonic. The major third (4:5) is also very clear, as
is the major second (8:9). Very clear, too, the major seventh (8:15 or
1088 cents) a third above the fifth. But this is not the one preferred
in practice which at 1104 cents is above the dotted line of equal
temperament.

The 4:7 interval at 969 cents is very interesting. Very audible.
Clear in the tanpura sound . But ask any Indian musician: “Do you
hear that?”. - “No...”. You sing it. Its very clear. You soften your
voice to hear the tanpura better. “No. It doesn’t exist. What are you
singing? It’s out of tune!”

D.E.Lekkas: Excuse me, do you mean they have been trained away
from hearing that harmonic, or how do you account for that?
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W.v.dMeer: | suppose so. | suppose the ear is so much trained to
hear those set intervals that an interval thats out of ...

C.Barlow: Yes, but look at Western music: if you play a low note on
the piano you hear the seventh harmonic very clearly. And none of
our harmony has a natural seventh in it.

D.E.Lekkas: Well thats different from not being able to hear it. You
might not use it but you should be able to hear it.

C.Barlow: I think its a matter of openness, actually. Its probably
lacking there in a certain respects.

The problem of measurement
W.v.d.Meer: Now let us listen to just one small musical fragment.
(Tape example)

In Ex.6 (next page) you see a line representing what you just heard,
the minor second and the minor third in the Raga Todi sung by the
great Mallikarjun Mansur, who died a few months ago. This
picture is obtained by pitch extraction. A lot of the research we did
was based on fundamental pitch extraction. It was done by a
machine designed by Bernard Bel in Bombay, on which a large
amount of material was processed. Of course I later used the
techniques that were developed here in Holland for pitch
extraction, a programme thats called LVS that’s quite satisfactory
to people nowadays. And I also developed a pitch extractor myself
to be able to do this work at home and on a normal computer,
because all those things work on special computers. Bernard’s
machines are in Bombay and the LVS machines are only available
at phonetic labs and institutions of that kind. Whereas the one that
[ built works on a relatively simple Apple Macintosh.
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Ex.6 - A short fragment of Raga Todi sung by Mallikarjun Mansur

295 243 258 257
300- ga ~
200 S4IA 78 Nz i 101 lﬂ\
100, L€ AL AR 18 WY
centg 98 118
re: average 103 cents (weighted: 96 cents)
ga: average 263 cents (weighted: 263 cents)

Now pitch extraction by itself is a complex matter. I don’t think I
should talk about that here. But here you see the problem of how to
decide what really is the intonation of the minor second and third:
see here the various windows in which they were measured. You
get an average here of 103 cents for the minor second, and an
average of 263 for the minor third. In one case, at 295 cents, the
minor thirds a bit higher, but it’s otherwise at 243, 258 and 257,
the minor second’s at 78, 118, 98, 101 and 118 cents. This happens a
lot in Indian music, this moving between notes from one to another.
The crazy thing is you can never really measure these notes.
Already making a window makes your measurement appear lower
than what maybe it should be. At the present state of the art we
cannot really measure a point with great certainty because even in
producing this graph there was a certain amount of smoothing
going on; actually very often these graphs look like lots of tiny
steps. Which point are you exactly measuring? Its very difficult to
say. Moreover, looking at such a narrow point in time, the question
also arises as to what note is suggested, because notes are often
much more suggested than actually produced, as is clear in Ex4.
Ex.7 shows the overall spread of re and ga in Todi

Questioner from the audience: I have one question about this problem,
a question | came especially for. According to Daniélou, the minor
third in Todi is a low 64:75, about 274 cents. What do you think? Did
you find this interval?

W.v.d.Meer: Not really. Unless you say, “well let me find one here.”
If you see the variability in this kind of movement you could say
“yes, well here look, he’s using a 243 you know.” But it makes no
sense also because the pitch moves too much. And soon as the
minor third is held steadily in Todi (which a number of musicians
do, but some say you never should), it’s very close to 310 cents.
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C.Barlow: You have 263 as an Ex.7 - Pitch spread for the lower
average in that fragment. tetrachord of Todias performed by
Mallikarjun Mansur with position

W.v.d.Meer: Yes, 263 here. But as and weight of re and ga indicated

[ said, what does this really
mean? Sa re Re ga ma

ga:272 (61)

D.E.Lekkas: May | make a point of
this? This 64:75 really shows up
in a lot of Asian music decidedly
not as a third, but always as an
augmented second. So, if you
don’t have an augmented second
with a tonic, I think it would be
hardly probable that you would
find it in practice. You might find
it between shrutis further up,

but not down there. re:116 (30)  fga:296 {5)

B

C.Barlow: Yes. Chromatically it
would have the function of an
augmented second, with two
major thirds in it.

D.E.Lekkas: It's conscious culture
that counts whether its a second
or a third.

W.vd.Meer: Now, if you listen to Indian music you’ll in fact hear
mostly that when notes are held steadily, they are very close to the
twelve-tone system. With some adjustments you’ll hear that the
third is really harmonic. But for the rest its a twelve-tone system.
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The major sixth of Raga Vibhas
However there is to my knowledge one clear exception:
(Tape example)

I was intending to play more of this example because its really
fantastic - this is Kishori Amonkar singing Raga Vibhas. And, as
you've heard, there is a beautiful major sixth really way below the
regular major sixth. You can see here in Ex.8 how low it is.

Ex.8 - Two examples (about three seconds each) of the Vibhas major sixth as
sung by Kishori Amonkar

0 1200
Pl 1100

. /\ -100
-200 1000
\N\W// \\.\:EE)A(L/ major|sixth 900

< > m
-400 800
-500 e f/ 700 \\m AW

cents N cents

And its interesting also to to tell you that when I discussed it with
her she said, “I spent many years practising this,” because its
really not easy. Its particularly difficult to get your perfect fifth in
order after you've made this major sixth so much lower. The
intention behind it is obvious — you see a certain consistency in the
Dha averages measured on a number of different occasions (Ex.9;
see also Ex.10).

Ex.9 - Ten cases of measured averages for the five scale degrees of Vibhas

a b c d e f g h i j

Sa| 2 0 |-2|-110 0 0 0 0 | -1
re| 75 |90 | 77 |90 | 87 |92 | 65 |145| 71 | 86
Ga| 380 | 388 | 385 |384 | 389 | 375 | 378 | 360 | 377 | 386
Pa| 692 | 696 | 696 | 697 | 698 | 698 | 695 | 690 | 698 | 696
Dha| 865 | 875 | 876 | 874 | 880 | 878 | 883 | 875 | 868 | 877
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This table also includes data from Mallikarjun Mansur (case ‘h’),
the singer from whom we heard the Todi Both Amonkar and
Mansur are extremely reliable artists. Absolute top of the Indian
tradition. And you see here a clear and blunt deviation from the
general model of our system of twelve semitones.

Ex.10 - Pitch spread for Raga Vibhas (positions in cents, weights bracketed)

>4 re: Ga ]::’a Dha Sa

c
90 384 697 874 1199
(121 (32D (378) (330 (980)

Lita

J.Tenney: It’s very close to a 3:5. Its almost right on it.
W.v.d.Meer: No. There is a very audible difference.
J.Tenney: Yes. A 3:5is only a few cents down.
H.Radulescu: It’s a thirteenth harmonic.

J.Tenney: Youre within ten cents of a 3:5 in all cases.
W.v.dMeer: I would say more like twenty cents.
ALaBerge: Well, what did she say?

W.v.dMeer: Oh, this is absolutely of interest, because if you are
talking about the 3:5, which is found quite commonly (and quite
steady) in Indian music if you have the tanpura tuning in ma, the
perfect fourth. If the tanpura is tuned to the perfect fourth, then
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the major sixth will have that 886 cents position (see Ex.1D, but the
one in Vibhas is definitely lower than that and she knows it very
well, having to work hard to make it that low. Its so much more
out of tune, in the Indian conception of intonation.

J.Tenney: Can we hear it again? I didn’t hear it out of tune.
H.Radulescu: YouTe not an Indian!

(Repeat of the last tape example)

J.Tenney: That’s a real good 3:5 I hear.

W.v.d.Meer: Very clearly not I'm afraid. I would never sing that Dha
of Vibhas, not even try to, whereas the 3:5 is a piece of cake.

Ex.11 - Tabulation and evaluation of raga tunings with a ma-tuned tanpura
(Pa-tuning supplied for comparison)

Scale-degree Theoretical syntonically Measured average in cents
Name Semitones alternatives in cents (range and position in % of a syntonic
with ratio (and derivation) comma)
ma-tuning Pa-tuning
Sal(do) O 0 0
I:1 (37/103)
re (reb) 1 90 112 91 94
243:256(0Vx5)  15:16(0V-1ID (100/2) (90/16)
Re (rel) 2 182 204 197 204
9:10(IV+III-V) 8:9(Vx2) (30/67) (110/102)
ga (mip) 3 294 316 299 304
27:32(IVx3) 5:6(V-1ID (60/23) (140/46)
Ga (mil) 4 386 408 396 390
4:5(111) 64:81(Vx4) (50/43) (110/20)
ma(fal) 5 498 520 498 501
3:40V)  20:27(Vx2-1V-1ID (10/0) (150/13)
Ma (fa#) 6 588 612 595 608
729:1024(0Vx6)  512:729(Vx6) (140/27) (180/84)
Pal(sol) 7 678 702 690 702
177147:262144(IVx1)  2:3(V) (--/50) (40/100)
dha(lab) 8 792 814 802 801
81:128(1Vx4) 5:8(VIII-1ID (170/43) (120/43)
Dha(lal) 9 884 906 889 899
3:5(IV+IID 16:27(Vx3) (40/21) (100/69)
nilsik) 10 996 1018 1001 1008
9:16(IVx2) 5:9(Vx2-11D (100/24) (230/56)
Ni(sit) 11 1088 1110 1105 1104
8:15(V+IID 128:243(Vx5) (70/76) (160/71)
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Ex.11 continued

The few cases of ma-tuned ragas are interesting:
re remains, as with Ma and Vi, at about QSii cents from drone centres
Re stable and surprisingly quite high
ga slightly lower than with Pa-tuning
Ga higher than in Pa-tuning, probably due to the 95ct proximity to ma
ma very stable, exactly at the low position
Ma seere
Pa only one case was measured, not surprisingly low
dha here the least stable, at the same pitch as with Pa-tuning
Dha stable and low as expected
ni slightly lower than with Pa-tuning (as with ga)
Ni see re

Historical background of the Vibhas tuning

[ will finish my talk here. You should still know in this particular
case that there are three varieties of Raga Vibhas. One is just like
the Raga Bhup, Sa Re Ga Pa Dha (do re mi sol la). Then there is
Sa re Ga Pa Dha (do reb mi sol la), which you just heard with the
minor second. The third is Sa re Ga Pa dha (do reb mi sol lab) in
which both the second and the sixth are lowered. Now it could be
the case that this raga was imported from another culture where
quarter—tones are used. I don’t know for sure, because I don’t know
any other than Indian music. Perhaps this Dha (la) has been slowly
trying in the process to find a place either in the higher or in the
lower position. It could also be that whats happening is a transition
from one to the other, a kind of transition seen very often in Indian
music, of notes one by one slowly shifting by a semitone: that
would be particularly probable in this case because there are
already four ragas using these tones and its really very confusing.

It has been shown to be a general principle, that when there are
many ragas using the same tones, some modification starts taking
place in one of them to differentiate it from the others. So it could
be simply a process in which Re (re) and Dha (la) are slowly being
lowered. One point that is perhaps in that direction is that
Mallikarjun takes the second at 145 cents, higher than the normal
minor second.

W.Swets: It sounds to me like the Turkish makam Hicaz. There you
have the same thing. The high minor second and the third a little
bit lower, and the sixth has about that pitch. But then of course
Hicaz is heptatonic, not like Vibhas.
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Some final conclusions:

Natural intonation is based on harmonic matching, the
coincidence of the n-th harmonic of the drone with the
m-th harmonic of the instrument.

Whenever harmonic matching offers two possibilities,
temperament occurs.

Inverted matching is more difficult - you have to listen to
whether the drone is in tune with the note you produce.

The combined spectrum of the drone with its adjacent
semitones has a unique quality that defies the laws of
consonance.

Editor’s Note: The note-names of North Indian music are based on the
seven degrees of the major diatonic scale, named as follows (commonly
used abbreviations in brackets): Shadj(Sa), Rshabh (Re), Gandhar (Ga),
Madhyam (Ma or ma), Pancham (Pa), Dhaivat (Dha) and Nishad (Ni).
Through the addition of the lowered (komal) second, third, sixth and
seventh (notated Re, Ga, Dha, Ni or alternatively re, ga, dha and ni) and
the raised (tivra) fourth (notated Ma# or Ma [against ma for the perfect
fourth]l), one gets the complete twelve-tone chromatic scale as
generally used in North Indian music. The notation system used here is
Sa -re - Re-ga-Ga-ma-Ma- Fa-dha- Dha-ni- Ni-S8a
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Monday 16:45
Bernard Bel

Rationalizing Musical Time:
Syntactic And Symbolic-Numeric Approaches

Music, like mathematics but unlike language, is not
intelligible unless it is grammatical: its form is its
content. As a product of “the unchanging human mind”
and body in the context of different cultures, music
reflects both man’s biological structure and the
patterns of interaction that have been institutionalized
as systems of relationships in culture. (Blacking 1974)

This paper deals with various problems in quantifying musical
time encountered both in the analysis of traditional drumming and
in computer-generated musical pieces based on “sound-objects”,
meaning code sequences controlling a real-time sound processor.

In section 1 it is suggested that syntactic approaches may be closer
to the intuitions of musicians and musicologists than commonly
advocated numeric approaches. Furthermore, symbolic-numeric
approaches lead to efficient and elegant solutions of problems of
constraint-satisfaction relative to symbolic and physical durations,
as illustrated in sections 2 and 3 respectively.

L. A syntactic representation of musical accentuation

Many players of the tabla, a North Indian two-piece drum set,
claim to follow a “rational” system of improvisation, the rules of
which are generally not explicit and are conveyed informally to
students - much like a natural language. Therefore, a strong initial
motivation of our formal study of the LLucknow tabla tradition was
the challenge of modelling a knowledge relying exclusively on oral
transmission (Kippen & Bel 1989a). Indian musicians represent
elementary sounds or finger movements by onomatopeic syllables
(“bols”, from the verb bolna, to speak), precisely transcribable on a
computer (Kippen 1988:xvi-xxiii). The very first version of the Bol
Processor (BP1) of 1982 was a customized word-processor allowing
real-time transcription of drumming sequences thanks to a
mapping of keyboard strokes to the vocabulary of tabla bols.
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Analytical work was then undertaken with the aim of (1) making
rules explicit for some compositional types, and (2) checking the
consistency of musicians’ assessments of correctness in both
teaching and performance situations.

Here is an example of a compositional type named ga’ida, a theme
and variations form par excellence (Kippen 1988:xi) from the Ajrara
tradition. Read linearly from left to right, each group represents a

beat comprising six units — note the variable lines in italics.

Theme:

dhin-dhagena dha-dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin-dhagena dhatigegenaka teeneteenakena
tin-takena ta-takena tatikekenaka teeneteenakena
tagetirakita dhin-dhagena dhatigegenaka dheenedheenagena
A few variations:

dhin--dhagena dha--dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
dheenedheenagena teeneteenakena tirakitatira kitatirakita
tagetirakita dhin-dhagena dhatigegenaka teeneteenakena
tin--takena ta--takena tatikekenaka teeneteenakena
taketirakita tin--takena tatikekenaka teeneteenakena
dheenedheenagena teeneteenakena tirakitatira kitatirakita
tagetirakita dhin-dhagena dhatigegenaka dheenedheenagena
dhin--dhagena dha--dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
dhin--dhagena dha-dha-dha- dhagenadheen--  dhagenadha—-
tagetirakita dhin-dhagena dhatigegenaka teeneteenakena
tin--takena ta--takena tatikekenaka teeneteenakena
taketirakita tin-takena tatikekenaka teeneteenakena
dhin--dhagena dha-dha-dha- dhagenadheen--  dhagenadha—-
tagetirakita dhin--dhagena dhatigegenaka dheenedheenagena
dhin--dhagena dha--dhagena dhatigegenaka dheenedheenagena
tagetirakita dhin--dhagena dhatigegenaka teeneteenakena
dheenedheenagena dheenedha-dheene dhatigegenaka teeneteenakena
tagetirakita dhin-dhagena dhatigegenaka teeneteenakena
tin--takena ta--takena tatikekenaka teeneteenakena
taketirakita tin--takena tatikekenaka teeneteenakena
dheenedheenagena dheenedha-dheene dhatigegenaka teeneteenakena
tagetirakita dhin--dhagena dhatigegenaka dheenedheenagena

Observations of several samples of variations (from performances
and demonstrations by the late Ustad Afaq Husain Khan of
Lucknow) suggested to us that the variable lines were made with
“words”, bol-chunks of lengths three, four and six in permutations
we presumed context-free: no technical (fingering) difficulties
were encountered with words arranged in arbitrary order.
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The most frequent words are listed in the following lexical rules:

A3 -+ dhin--

A3 -+ dha--

A3 -+ dhagena

A4 -+ tirakita

A3 A3 =  dhagenadhin--

A3 A3 = dhagenadha--

Ab -+ dha-dha-dha-

A6 -+ dha-ta-dha-

Ab =+ dheenedheenedheene
Ab -+ dheenedha-dheene
A6 -+ tagetirakita

Ab -+ dheenedheenagena
A6 -+ teeneteenakena

Ab - dhatigegenaka

In view of their frequent occurrence in examples, the words
“dhagenadhin--" and “dhagenadha--" have been listed specifically. A
grammar for defining all possible sequences in variable lines of six,
twelve or twenty-four units is easy to construct (Kippen & Bel
1992). However, some pieces generated by the grammar display
irregularities in their accentuation. For instance,
dhin--tiraki tadhagenadhati gegenakatira kitatirakita

imposes a rhythm counter to the natural stresses of the beat and
half-beat and is therefore virtually impossible to recite or perform
at speeds normally employed by musicians (MM 108-120, i.e. up to
twelve bols per second). In a four-beat string comprising twenty-
four units, primary accents fall on beats and half-beats: 1, 4, 7, 10,
13, 16, 19 and 22. A cursory analysis of variations created by
musicians showed that in addition to these divisions they employed
hemiolic rhythmic patterns beginning on units 1, 7 and 13. This
produces a series of secondary stresses on units 5, 9, 11, 15, 17, 21.
Here is a list of possible starting positions for the blocks defined
above:

A3: 1, 4,7,10,13, 16, 19, 22

A4: 1,579,113, 15,17, 21

Ab: 1, 4,7,10,13, 16, 19

tagetirakita: 1, 4, 5,7, 9, 10, 11, 13, 15, 16, 17, 19

The exceptional status of “tagetirakita” is due to the fact that it is
accentuated in two different ways. Therefore it is labelled with a
new variable: Cé6.
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We developed a way to systematically define derivations of B24, BI2,
and B6 by taking into account acceptable starting positions:

B24 -+ A3 B21 ..(A3 in starting position: 24 - (3+21) +1=1)
B24 - A4 B20

B24 - C6 BI8

B24 - A6 BI8

B21 -+ A3 BI8 ..(A3 in starting position: 24 - (3+18) +1=4)
B21 =+ A4 BI7 ..cancelled: A4 in starting position 4)

B21 - A6 BI5

B21 - Cé6 BI5

B20 -+ A3 BI7 ..(cancelled: A3 in starting position 5)

B20 - A4 BI6

B20 -+ A6 Bl4 ..(cancelled: A6 in starting position 5)

B20 - C6 Bl4

etc...

This grammar may produce a string “A4 A4 A4 A4 A4 A4”, the only
derivation of which is an unbroken series of tirakitas musicians
would certainly assess as incorrect. More than two consecutive
A4s were found to be unacceptable. The solution to this problem
lies in introducing left contexts in all rules producing A4. Rather
then listing all acceptable left contexts (as standard Chomsky
grammars require), we found it practical to introduce negative
contexts.

The resulting grammar is

B24 - A3 B21

#A4 #A4 B24 —+ #A4#83A4 A4 B20
B24 - (C6 BI8

B24 - A6 BIS8

B21 - A3 BIS8

B21 - A6 BI5

B21 - C6 BI5

#A4 #A4 B20 == #A4#A4 A4 Bl16
B20 - (C6 Bl4

etc...

Here, for instance, rule “#A4 #A4 B24 - #A4 #A4 A4 B20” means
“B24” may be rewritten “A4 B20” if not preceded by “A4 A4’

A full description of the grammar of this ga’ida is discussed in
(Kippen & Bel 1992, appendix 3); a variant of it is available in the
Bol Processor BP2 shareware package.
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A detailed comment of syntactic extensions of the formal language
model applied to musical sequences we call BP grammars may be
found in (Bel & Kippen 1992). Readers may also refer to (Bel 1992)
in order to understand the parsing algorithm used for assessing
the compatibility of arbitrary sentences with a given BP grammar.

The qga’ida example makes it clear that quantization of rhythm and
metre, although generally described as a typical numeric problem
(e.g. Vuza 1988), may also yield syntactic descriptions with the
advantage of reflecting productive and analytical processes based
on permutations and substitutions. Learning these processes from
examples is an important part of the basic training in traditional
drum improvisation/composition (Kippen & Bel 1989b).

2.  Symbolic representation of discrete sound-object structures

2.1 Bol Processor BP2: the environment

“BP2” is a new version of the Bol Processor operating in both MIDI
and Csound environments for design-based (stipulatory) or
improvisational rule-based composition (Laske 1989:51,53). It is
available as a shareware package for Macintosh computers
distributed on Info-Mac mirror sites!

Several operational modes are available in BP2, from one that
leaves all decisions to the machine (stochastic improvisation) to
one that allows a composer to take stepwise decisions. The
interaction of modules in the MIDI environment is summarized in
Ex.1

Three fields are used for storing a grammar, items generated by
the grammar (on the basis of decisions taken by the inference
engine) and sound-object prototypes (arbitrary message sequences
loaded from a MIDI musical instrument and edited manually).
Terminal symbols in the grammar are the labels of sound-objects
replacing the onomatopeic syllables (bols) used by BPI.

The interpreter works in three stages:

1) The item generated by the grammar is interpreted as a
polymetric expression (see 82.7 infra). The output is a complete
polymetric expression yielding a bidimensional array of terminal
symbols called the phase diagram (see §2.3).
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2) The expression is interpreted as a sound-object structure, using
information about the structure of time (see 82.2) and object
prototype definitions. The main output is an extension of the phase
table containing the performance parameters of objects in the
structure: their start/clip dates, time-scale ratios, etc.

3) MIDI messages contained in sound-objects are dispatched in real
time to control the sound processor. Optionally, a Csound score is
produced.

Ex.1- A block diagram of Bol Processor BP2

Display
A A A
Inference
engine [tem(s) Interpreter
A A A A A
Sound-object
Grammari(s) prototypes
A + A A
| I y
Editor MIDI input MIDI output
A A
y
Keyboard and/or MIDI musical Sound
graphic input instrument(s) processor(s)
y
Other BP2, sequencer, etc...

The diagram indicates that external control can be exerted on the
inference engine, grammars and the interpretation module. Specific
MIDI messages may be assigned to changes of rule weights, tempo,
the nature of time (striated/smooth) and many other parameters.
Messages may also be used for synchronizing events during the
performance, or even assigning computation time limits. These
features are used in improvisational rule-based composition.
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Several BP2s may be linked together and with other devices such
as MIDI sequencers. Messages on the different MIDI channels may
be used to make machines communicate or control several sound
processors. Thus it must be kept in mind that “sound-objects” do
not necessarily produce sounds; depending on the implementation,
they may contain any kind of control/synchronization message as
well.

2.2 Symbolic time

Assume that “a”, “b”, “c”, “e”, “f”", “g” and “-” are labels of arbitrary
sound-objects (s1milar to “dhin”, “dha”, etc. in 81). Label “-” is
reserved for silences which are viewed as particular objects. Ex.2
represents a structure of two sequences which, as a first
approximation, might be notated S{=“a b ¢ a” and Sy =“e - f g".

Ex.2 - A representation of sequences Sy and S».

Si a b ¢ a NIL e - f g NIL So
Rhythmic
01 structure
; Sy(rinbolic
D tl ttyty t5 7 th ates
\w\\ﬂ\ .

——y »
~ Structure

T 1T 1T 1
0 Physical dates (sec.)

Here a set of strictly ordered symbolic dates D = (tt,...) is
introduced along with ©;, an injective mapping of each S; into D By
convention, each ©; is a monotone increasing function: sequentiality
implies that all objects appearing in a sequence are ordered in
increasing symbolic dates. Each mapping 0; may in turn be viewed
as a restriction to Sj of a general mapping © which we call the
rhythmic structure of the sound-object structure. “NIL” symbols
are used to mark the ends of sequences.
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The mapping of sequences to the set of symbolic dates is mainly
information about the ordering of any pair of events belonging to
either sequence. Here, for instance, Sy and S, will partly overlap.

The set of symbolic dates D is then mapped to physical time, ie.
the set of real numbers R. We call this mapping @ the structure of
time (the same was called structure temporelle in Xenakis
1963:190-191,200). In the above example, ® is a multivocal mapping,
which means, for instance, that each sound-object “a” and “e” at
symbolic date t3 would be performed twice. In general only strictly
increasing (univocal) mappings are envisaged, so that

Vij e N, tj < tj <=> ®(ty) < O(ty).

In this case, if we consider Dist(t;tj) = I(t;)-®(t;)| (the absolute
difference value), Dist is a distance on D.

Besides, since
Vijk e N, Dist(ti,tj) + Dist(tj,tk) > Dist(t;,ty)

(DDist) is also a metric space. (DDist) is also FEuclidian
(metronomic time) if this additional property holds:

Vijkl e Ny j-i = -k => O(t;) - d(ty) = d(ty) - D(ty)

The composition of the two mappings (®,0) is the in-time
structure of the musical item, ie. the mapping that permits its
actual performance.

As suggested by the terminology, structure of time and in-time
structures are two concepts borrowed from Xenakis (1963). We find
these concepts essential as they deal with sets of physical dates not
necessarily structured as a Euclidian space.
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2.3 Phase diagram

Both sequences of the last example may be represented together in
a single array (the phase diagram), the columns of which are
labelled and ordered on symbolic dates (see Ex.3 - the empty
sound-objects “_” indicate the prolongation of the preceding
sound-object, if any, and should not be confused with silences “-”).

Ex.3 - A phase diagram

t t t

4 b5 ot oty ty ty ty tpy ty ty
- a _ b C a _ _ NIL _ _ -
- - - e _- - _ _ t _- g NL _ _

Using this information, Sy and Sy are properly notated as
Sj=a_bca__ So=e_-__f_g.

Here the relative position of the next non-empty sound-object or
“NIL” marker shows the symbolic duration of a sound-object. In Sy,
“e”, 27 47, “g” have symbolic durations 2, 3, 2, 1, respectively. S
contains “a” twice with respective durations 2 and 3. If “a”, “b” etc.
express conventional note-lengths, taking “b” as a quarter-note

R

would make “e” a half-note and “-” a dotted half-note rest.
2.4 Smooth vs striated time

Pierre Boulez (1963:107) introduced the notions smooth time (“temps
lisse”) and striated time (“temps stril’) to characterize two typical
music performance situations. Striated time is filled with pulse
(regular or irregular), whereas smooth time does not imply any
counting: a particular case of striated time is of course the pulse of
a metronome. Examples of smooth time are common outside
Baroque music, e.g. melodic introductions in Indian raga music.

In computer-generated music, these notions are bound to the
structure of time (the ® mapping): in striated time, ® is known in
advance, whereas in smooth time it is determined at the time of
performance. Therefore, a striated structure of time is a set of
physical dates defining reference streaks on which sound-objects
should be positioned (see §3) whereas a smooth structure of time is
a set of dates determined by the sound-objects themselves.
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2.5 Out-time objects

Sound-objects have strictly positive symbolic durations. In some
cases it is useful to have “flat” objects with null durations called
out-time objects, i.e. sound-objects executed “simultaneously” or in
very quick succession. A typical application of out-time objects in
BP2 is the exchange of parameters or synchronization messages.
For a sound-object “a”, the corresponding out-time object is
notated “«a»”. In this convention, a string like “«a» b” represents a
structure in which out-time object “«a»” starts at the same

symbolic date as sound-object “b”.
2.6 Tempo markers

Sound-object sequence “a b ¢ d e f may be notated “/labcde f,
where “/1” is an explicit tempo marker. To play the same sequence
five times faster we write “/5a b c d e f’, a notation already used in
BP1 to indicate bol density. North Indian drummers and dancers say
dogun, tigun etc. for bol densities of two, three etc. bols per matra

(beat).

Explicit tempo markers make it possible to modify tempo within a

single sequence. For instance, in the sequence
/2abcdef/3ghijklmno

are played at bol density 2 (two sound-objects per beat),

then “g”..“0” at bol density 3, a tempo acceleration of 3/2, also

notatable as /6a_ _b__c__d__e__f _g_h_i_j_k_l_m_n_o_.

{3 W e
a.. ft

Silences may be notated with hyphens or integers. These notations

are strictly equivalent:
/2ab--cd/5e----fgh
/2ab-_cd/5e-___fgh
/2ab2cd/5e4fgh

Rational numbers may also indicate fractional silences, e.g.
/lab/2cdefd4/3gh

where “a” and “b” are at bol density 1, “c”, “d”, “e”, “f", “g” and “h”

at bol density 2, while sequences “cdef” and “gh” are separated by a

silence of duration 4/3. Since this silence has bol density 2, its

actual symbolic duration is 4/3 x /2 = 2/3. Here, BP2 expands the

representation to /6a_____b_____c__d__e__f__----g__h__|
where the “4/3” silence appears as “----" (or equivalently as
“____” OI‘ “4”).
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2.7 Polymetric expressions

Suppose we wish to superimpose two sequences A and B defined
by rules A— abc A=+ defg B— hi

in which “a”, “b”, ... “i" are labels of sound-objects. Alternative
definitions of “A” indicate that it may contain either three or four
objects. To start with, we do not know how to interpret the exact
superimposition of two sequences: combining “abc” and “hi” may
for example yield the following four alternative phase diagrams:

(1) (2) (3) (4)

abce abce a_b_c_ a_bc etc...

hi_ _hi h__i__ hi__
The prolongation symbols “_” could be replaced by silences (“-”).
However, since silences do not explicitly appear in the grammar,
we may postulate that creating them is not a valid choice. We also
discard interpretations (1) and (4) wherein equal symbolic durations
are not maintained within the string “hi”. Finally it is reasonable to
expect a synchronization of both the start and clip points of the
synchronized sequences, there thus being no reason to start “a”
before “h” as suggested by (2). As a result, the most intuitively

appealing interpretation (failing any additional information) is (3).

Now we introduce a notation of superimpositions:

{A,B} (or its equal, {B,A}) is the superimposition of sequences “A” and
“B”. We call “{A,BY” a polymetric expression with arguments “A”
and “B”. Using this notation, a grammar yielding all acceptable
superimpositions of “A” and “B” would be:

S - /1{ALBl} Al a_b_c_ Bl = h__i__
S - /1{A2,B2} A2+ defg B2 > h_i_

We need to check that a string like “/1{defg,h_i_}” contains an

equal number of terminal symbols in both arguments, failing which

the phase diagram cannot be constructed. It is evidently

cumbersome to have two versions of “B” - they point to identical

ratios of symbolic durations: “B2” resembles “BI” in every respect.

Ideally, the grammar that should be used is

S - /1{A,B} A = abc A =+ defg B = hi

expecting that there will be a method for interpreting an

incomplete polymetric expression like /1{abc, h i} as
/2{a_b_c_,h__i__}

i.e. a complete polymetric expression.
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Note that the tempo marker now indicates bol density 2 because of
stretched durations. Thus, for instance, the symbolic duration of
“b” remains one beat. A compact representation of this complete
expression uses explicit tempo markers in each argument, i.e.:
{/3abc,/2hi}

showing the classical “three-in-two” polyrhythm, along with the
information that tempo should be divided by a time scale factor of
three so that actual durations will be the ones we expect.

Interpreting polymetric expressions is the task of a fast algorithm
implemented in BP2 (Bel 1991-1992). Since the algorithm makes use
of arithmetic operators such as LCM (lowest common multiple)
together with rewrite procedures it may be classified as a
symbolic-numeric method. Thanks to recursivity it is possible to
interpret nested expressions such as {ilab,cdel,jkl yielding
{/6i{/6ab,/9cde},/4jk} (in which the time scale factor is six).

If some arguments contain explicit tempo markers indicating a
compulsory bol density, the algorithm will try to satisfy all
constraints so that arguments of polymetric expressions finally
have identical symbolic durations. In some cases there is no
solution; therefore it is preferable (and always possible) to avoid
writing explicit tempo markers in sequences or in polymetric
structures, as we will now show.

2.8 Polymetric representation of a sequence

Introducing a string of silences as the first argument of a
polymetric expression is a good method for suppressing explicit
tempo markers in a sequence. For instance,

abc_/3d_e
may be notated abc_/3{---,d_e}

which is equivalent to abc_/31{3,d_e}
abc_{3/3,d_e}
abc_{l,d_e}

The advantage of the last notation is that the same expression may
be used at different tempos. For instance, when it needs to be
performed four times faster we just write

/4abc_{l,d_e}
rather than /4abc_/12d_e
which forces us to recalculate the second tempo marker.
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Polymetric representation, therefore, makes it possible to build
very complex musical structures by way of simply rewriting rules
(formal grammars), given that the computation of symbolic
durations and the matching of superimposed sequences is
ultimately taken care of by a unique and efficient polymetric
interpretation algorithm.

Other features relative to polymetric expressions (along with
typical examples in conventional music notation) may be found in
(Bel 1991-1992).

3. The time setting of sound-objects

Informally, instantiating a sound-object means dispatching to the
sound processor all messages defined in its prototype. A naive
interpretation of sequences of sound-objects would be to arrange
all corresponding time intervals strictly sequentially. Duthen and
Stroppa (1990) have suggested a more general approach starting
from the assumption that any sound-object may possess one or
more time points playing a particular role, e.g. a climax. These
points they call time pivots. They further suggest the construction
of sound structures using a set of synchronization rules. Their
approach is attractive but hard to implement if the formalism of
synchronization rules remains too general. We therefore simplified
their idea, assigning to each object a single pivot.

Consider for instance a complete polymetric structure Sy, Sy, S3
derived as

fa_bcd_e,a_f_gh_ ji_a_i_}
yielding the phase diagram

a _ b C d _ e NIL
a - f — g h — NIL
j i _ a _ i _ NIL

The definition of each sound-object contains the relative location of
its pivot and metrical properties allowing the calculation of its
“time-scale ratio” - informally, a factor adjusting the duration of
the sound-object to the current speed of performance.

Ex.4 is a graphic representation of a possible instance of this
polymetric structure as displayed by BP2:
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Ex.4 - A structure of sound-objects

|

Physical time

Here, the structure of time is an irregular pulsation represented
by vertical lines (time streaks). Each sound-object’s time-span is
seen as a rectangle with arbitrary vertical width and position;
these positions were chosen to separate objects in the diagram. It
is clear, for example, that “c”, “t", “g” and “a” have overlapping
time-spans between the third and fourth streaks. Lengths of
rectangles represent the physical durations of sound-objects.
Out-time objects, if any, would appear as vertical segments.

Vertical arrows indicate time pivots. As with “e”, the pivot is not
necessarily a time point within the time-span of the sound-object.

This diagram shows the default positioning of objects with their
pivots located exactly on time streaks. Although it is reasonable
that instances of “c”, “t" and “a” overlap between the third and
fourth streaks since they belong to distinct sequences performed
simultaneously, it may not be acceptable that “f” overlaps “g” in a
single sequence Sy, the same holding for “d” and “e” in S;. It may
also be unacceptable that the time-spans of “j” and “i” are disjunct

in S3 while no silence is shown in the symbolic representation.
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How could one deal with a constraint such as the end of
sound-object “f” may not overlap another sound-object in the same
sequence? If object “g” is relocatable then it may be delayed
(shifted to the right) until the constraint is satisfied. We call this a
local drift of the object. Yet the end of “g” will now overlap the
beginning of “h”. Assume that this too is unacceptable and “h” is
not relocatable: we should then look for another solution, e.g.
truncate the beginning of “h”. If this and other solutions are not
acceptable then we may try to shift “f” to the left or to truncate its

end. In S;it might also become necessary to shift or truncate “a”...

So far we suggested constraint propagation within one single
sequence. In the time-setting algorithm the three sequences, taken
in order, are S, Sy, S3. Suppose that the default positioning of
objects in Sj satisfies all constraints but no solution has been found
to avoid the overlapping of “f" and “g” in Sy. A new option is to
envisage a global drift to the right of all objects following “f” in S».
The global drift is notated A on Ex.5. All time streaks following the

third one are delayed (see the dotted vertical lines).

Ex.5 - A solution using global drift

l

b

Physical time

»

16 The Ratio Symposium



This solution is called “break tempo” because its effect is similar to
the organum in conventional music notation. Although the global
drift increases the delay between the third and fourth streaks, the
physical durations of sound objects are not changed because their
time-scale ratios have been calculated beforehand.

Now the positioning of objects in Sy is acceptable, but it might have
become unacceptable in Si: there may be a property of “b” or “c”
saying that their time-span intervals cannot be disjunct, so that “c”
could be shifted to the left, etc. Evidently, whenever a global drift
is decided the algorithm must start again from the first sequence.

The process of locating - ie. instantiating - sound-objects, as
illustrated in this example, is the task of the time-setting
algorithm imbedded in BP2. If no global drift is created, the time
complexity of the time-setting algorithm is O(nmax.imax?), where
“nmax” is the number of sequences and “imax” the maximum
length of a sequence. In the worst case, the time complexity is
given by O(nmax?2imax?). The algorithm is described in great detail
in (Bel 1991-1992).

4. Conclusion

Work with Bol Processors BP1 and BP2 has been beneficial in finding
a workable compromise between general formal language models,
the mathematical properties of which are well established although
they often bear little musical relevance, and ad hoc representations
fulfilling the requirements of only particular musical tasks.

Polymetric structure interpretation and the constraint-based
time-setting of sound objects contribute to compensate the rigidity
of the timing of computer-generated musical pieces, as the
synchronization and accurate timings of concurrent musical
processes are handled by the computer on the basis of (possibly
incomplete) information on structures and sound-objects.

L E.g. ftp://ftp.hawaii.edu/mirrors/info-mac/gst/midi/
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Tuesday 10:00
James Tenney
The Several Dimensions of Pitch

The title for this talk, “The Several Dimensions of Pitch”, was
intended to be slightly provocative, because we usually think of
pitch as being one-dimensional, like frequency. But I'm going to
suggest that there are, in fact, two different aspects of pitch
perception, and that one of those aspects can also be thought of as
multi-dimensional. In considering such fundamental questions
regarding the nature of auditory perception it is often useful to
think about the evolution of hearing, and I would invoke the image
of a primitive human animal trying to survive in the jungle (after
all, our ears surely evolved as means of survival, not for musical
ends). What would the auditory system of this primitive human
animal need to be able to do?

First, it would have to be sensitive to changes, with time, in the
properties of a sound, since such changes are indicative of physical
changes in the environment. In addition, however, it would need to
be able to do two complementary if not contradictory things,
namely (1) distinguish between or among sounds issuing from
different sound sources, and (2) recognize when two or more
sounds - though different - actually arise from a single sound
source. It seems that nature has been very generous to us in this
respect, since we have been given two different mechanisms of
pitch perception. Fortunately, these two mechanisms work
together in such a way that we can scarcely distinguish the two
aspects. Thus, although the two mechanisms affect the pitch
percept in different ways, they are very easily confused, and
perhaps for that reason have not previously been distinguished in
the literature of psychoacoustics or of music theory. The first
mechanism by itself would yield a rather diffuse pitch percept, but
it is highly effective in the detection of rapid changes of pitch. The
other mechanism lends the pitch percept its more precise,
focussed quality, but it requires more time to be effective.
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Fig. 1 - Schematic diagram of the “unrolled” cochlea and basilar membrane!

Cochlear nerve

Incus

Malleus Scala vestibuli
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|
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Round window | ! Basilar'membrane :
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Eustachian tube 1500-20000" 500-1500 '20-500 Hz '

The first mechanism carries what I call the contour aspect of pitch
perception, correlated with the distribution of mechanical and
neural activity on the basilar membrane and the organ of Corti.
The inner ear, as we all know, is shaped like a snail shell (cochlea
in Latin). If we imagine unrolling that shape, it can be represented
schematically as in Fig.l The input to the cochlea is at the oval
window, where the vibration is sent to the basilar membrane in the
form of a travelling wave. As Georg von BUkUsy demonstrated, the
envelope of this travelling wave reaches its maximum amplitude at
a distance from the oval window set by the vibration frequency:
higher frequencies nearer to the oval window, lower ones farther
from it (see Fig.2). The basilar membrane vibration elicits nerve
impulses in hair cells arrayed along the organ of Corti, with a
temporal density which varies directly with the amplitude of the

Fig. 2 - Travelling wave envelopes of travelling wave. A crude form

various frequencies on the basilar of frequency discrimination s
- thus effected in the form of a

membrane 1600 400 100 25Hz spatial spread of mechanical and
neural activity in the cochlea;
this information is transmitted
to the central nervous system
(CNS) via the auditory nerve in a
way that preserves its original
spatial order, i.e. tonotopically.

T | | |
0 10 20 30

Distance from stapes in mm
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This first mechanism is very sensitive to changes in the properties
of a sound, and is the basis for our sense of shape in melody, and
for our sense of register, but it is not what gives the pitch percept
its “point-like” character. You can see (in Fig.2) how a sharply
defined, singular kind of percept is not likely to arise from this
mechanism alone, because there is such a broad spatial distribution
of activity. Thinking again of the human animal in the jungle, the
first of these aspects of pitch perception tells him about the
rushing noise of the lion as it comes through the brush.

And it’s very useful for establishing the general characteristics of
that noise - e.g. its intensity, bandwidth, and approximate pitch. It
is also quite sensitive to changes in these characteristics. But it is
not going to be useful for certain other things. For example, it
won’t help to find out that the several harmonic partials in the
sound of the lions roar are actually coming from just one lion. For
that, something else is needed - a mechanism that can detect the
constancies in the signal and thus sense when two or more widely
separated frequencies are so closely related (in some other respect)
that they probably have been produced by the same sound source.

So what is this other aspect of pitch perception, and what would
be its associated mechanism? [ believe it has to do with the
temporal ordering of the neural information. What I have already
described involves a spatial ordering; though these nerve impulses
are happening in time, their important feature (as far as the first
mechanism is concerned) is their spatial distribution - where the
impulses originate. The basis for the other aspect is time - and it
kind of astonishes me that more hasn’t been made of this, because
the temporal information is there and available to the CNS, and it
seems unlikely to me that the evolutionary process would have
allowed for an available mechanism to be wasted. If you take any
position along the organ of Corti, and measure whats happening in
the hair cells at that position, any given input frequency produces
synchronised pulses in those hair cells, and thus in the auditory
nerve. Not every hair cell responds to every signal cycle, but the
input frequency will be represented in the auditory nerve by
synchronous nerve firings by groups of cells, in “volleys”. So the
CNS is being sent time information, which I believe is the basis for
the second mechanism, which in turn is responsible for the aspect
of pitch perception which I call the harmonic aspect.
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Now I think the evolutionary reason for the development of a
second mechanism of pitch perception is that only in this way
could the various harmonic partials in a single vocal sound,
whether that of a lion or of another human animal, be correlated,
and recognized as having been produced by a single sound source.
Because at least in the vowel aspect of speech we hear a set of
harmonic partials, and it is the distribution of energy in that
spectrum that tells us about the nature of the vowel sound.

C.Barlow: Are you saying you need the temporal information to get
the spectral?

J.Tenney: In a certain sense, yes, but more precisely, 'm saying that
we need the temporal information to reduce the vowel sound from
a complex spectrum to a singular percept. In other words, in vowel
perception we don’t hear “chords”. Rather, the several harmonic
partials are somehow correlated with each other so that what we
hear is a single pitch, with a certain loudness and timbre. But,
whatever that correlation process is, I don’t think it can be done
spatially. I'm aware of the theories that try to explain this in terms
of the spatial distribution of activity on the basilar membrane, but
[ don’t think they are workable. The distinction I am making
between the two mechanisms is rather like the distinction between
the rods and the cones in the retina of the eye. The cone cells are
specialized to respond to colour and in brighter light, and have
better resolution. The rod cells, on the other hand, act more in
peripheral vision, and come into operation when the light is not so
bright. And yet they are highly sensitive to movement. The two
cell populations are sometimes described as separate visual
systems. Analogously, I'm suggesting that there are two different
aspects of pitch perception, based on two different mechanisms.

The first mechanism, which determines the contour aspect, is not
only very useful but essential, because it can respond quickly to
changes in the frequency and other properties of a sound. But a
pitch percept determined by this mechanism alone would not have
been very precise. The other mechanism, which determines what I
call harmonic perception, is much more precise - but it takes time.
It takes time because it is a temporal process, because there must
be some mechanism to correlate these temporal sequences of
neural pulses, and that can’t be achieved instantaneously.
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A.La Berge: Are you talking about this as a combination of neural and
physical activity or simply activity on the basilar membrane?

J.Tenney: When I talk about the auditory system I mean from where
the sound enters the ear all the way up to the central nervous
system. With both aspects of pitch perception we must look at
whats happening in the nervous system, because even though we
can see how the spatial distribution occurs in the ear we must
imagine that same distribution projected to higher levels, and see
it in some kind of physical space in the brain. The other aspect is
temporal, but in each case were looking at everything from the
basilar membrane on up.

[ will propose a model for the harmonic aspect of perception
which is not intended to be a picture of whats happening in the
brain, but merely a useful sort of mathematical construct that can
display some of the properties of harmonic perception. It takes the
form of a lattice structure in what I call harmonic spaced For a
given set of pitches, the dimensions of this space correspond to
the prime factors required to specify their frequency ratios with
respect to a reference pitch. It is a discrete space, not a continuous
space, with the line segment connecting any two adjacent points in
the lattice symbolizing a multiplication (or division) of the
frequency ratio by the prime number associated with that
dimension. Thus, the first two dimensions of such a lattice
structure would involve the prime factors 2 and 3, and a step from
one point to an adjacent point in the lattice would mean a shift up
or down of one octave (in the 2-dimension), or of a twelfth (in the
3-dimension). What we have then is a two-dimensional harmonic
space that would include any combination of octaves and fifths, ie.
any “Pythagorean” pitch set. Note that, if we imagine this lattice
structure extended indefinitely outward in all directions, it must
eventually include every possible ratio of two numbers whose
prime factors are no larger than 3. The one-dimensional
continuum of pitch-height (i.e. “pitch” as ordinarily defined) can be
represented as a central axis of projection within this harmonic
space, as shown in Fig. 3. The position of a point on this
pitch-height axis may be specified, as usual, by the logarithm of
the fundamental frequency of the corresponding tone, and the
distance (or pitch distance) between two such points by the
difference between their log-frequency values.
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That is, PD(f,,f},) o log (a/b) = log(a) - log(b)

where f, and f}, are the fundamental frequencies of the two tones,
a=f,/GCD(f,,f},), b=f,/GCD(f,,f}), and a>b.

In harmonic space another measure I call harmonic distance can be
defined, for any interval represented by the frequency ratio ab, as

HD(a:b) o« log (ab) = log(a) + log(b)
where a and b are in maximally reduced or “relative prime” form.

Fig. 3 - A two-dimensional (2,3) lattice in harmonic space, showing at centre
the pitch-height projection axis.

4 \ /12 / \
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Fig. 4 - A three-dimensional (2,3,5) lattice in harmonic space

In order to go beyond Pythagorean pitch or interval sets, we must
introduce one or more new prime factors into our interval ratios,
and thus new dimensions in our lattice in harmonic space. In Fig.4
an extension into a third dimension associated with the prime
factor 5 is shown. Again, if such a three-dimensional harmonic
space lattice were extended indefinitely in all directions, every
possible frequency ratio involving the prime factors 2, 3, and 5
would eventually be included. If we wish to extend the harmonic
space lattice into yet another dimension, we run into the difficulty
of representing four dimensions in a two-dimensional graph, but
there is a useful device that can be introduced here which invokes
“octave equivalence”, and involves collapsing all the points of a
given “2-vector” into a single point, which then represents not a
specific pitch (or interval with respect to 1:1), but rather a “pitch
class”. I call the resulting space, which contains one dimension less
than the original lattice, a pitch-class projection space. Fig.5 shows
the pitch-class projection space derived in this way from the
lattice of Fig.4. Figs 6 and 7 show the lattice structure for the major
and minor diatonic scales (using Harry Partchs labelling
convention, whereby a given pitch class is identified by the ratio it
has in the first octave above I1).
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Fig. 5 - The two-dimensional (3,5) lattice in the pitch-class projection space
derived from the lattice of Fig. 4.

Notice that these last structures are compact, and I think thats an
important feature of harmonically coherent pitch sets. Clarence
mentioned the Indian Sruti system in his talk yesterday, and he
described it as a kind of ellipse. In my model it would be
represented as a two-dimensional lattice in a pitch-class projection
space with prime factors 3 and 5, as shown in Fig.8.

Fig. 8 - The Indian Sruti system*

40/2710/9 _5/3 5/4-15/8-45/3>
256/243 —128/81-32/27—16/9_4/3_1/1-3/2—9/827/16-81/64—243/128
64/45-16/15-8/5_6/5_9/5_27/20

So far | have assumed that simple integer or “just” ratios are
involved in the specification of a pitch or interval set. The
harmonic space concept can be applied to tempered sets as well,
but certain new factors must be taken into consideration. The
most important is a notion that I call interval tolerance - or simply
tolerance: the idea that there is a certain finite region around a
point on the pitch-height axis within which some slight mistuning
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is possible without altering the harmonic identity of an interval
The actual magnitude of this tolerance range would depend on
several factors, and it is not yet possible to specify it precisely, but
it seems likely that it would vary inversely with the ratio
complexity of the interval. That is, the smaller the integers needed
to designate the frequency ratio for a given interval, the larger its
tolerance range would be.

Now I propose as a general hypothesis in this regard that the
auditory system would tend to interpret any given interval as thus
“representing” - or being a variant of - the simplest interval
within the tolerance range around the interval actually heard
(where “simplest interval” means the interval defined by a
frequency ratio requiring the smallest integers). The simpler just
ratios thus become “referential” for the auditory system - not in
any conscious or cognitive way, but rather on a very primitive,
precognitive, neurological level

Another hypothesis might be added here, which seems to follow
from the first one, and may help to clarify it: within the tolerance
range, a mistuned interval will still carry the same harmonic sense
as the accurately-tuned interval does, although its timbral quality
will be different - less “clear”, or “transparent”, for example, or
more “harsh”, “tense”, or “unstable”, etc. I should note that both of
these hypotheses are based on a consideration of how the CNS
might identify the harmonic interval between two tones. I suggest
that this involves a comparison of neural pulse trains synchronous
with the fundamental frequencies of the tones, and that this
comparison is mediated by something like a “coincidence neuron”
(or some equivalent neural network) which fires only when two
input pulses arrive simultaneously. The output of such a neuron
would thus be another neural pulse train with a frequency
determined by the common period of the two input pulse trains.

But since neural pulses are of finite duration, we must replace the
notion of absolute or discrete simultaneity with one of a finite
window of effective simultaneity. | have no experimental data on
which to base an estimate of the duration of such a “window”, but
a minimum duration - on the assumptions of my model - might be
deduced from an estimate of the tolerance range itself. Thus, for
example, if our tempered major third is functioning harmonically
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as a 5/4, the tolerance range must be at least 14 cents (=400-386),
and neural pulse trains at these two relative frequencies (just vs.
tempered) would be 5/4 vs. %/2 or 1.25/1.2599=0.992, so they differ by
only eight tenths of one percent! Thus if we play a major third on
a tempered piano, where its 14 cents sharp, we “understand” it as a
5/4 relationship - ie. it has the same harmonic sense as a 5/4. It
may sound out of tune, but its that particular (5/4) relationship
“out of tune”. Its not just some arbitrary abstract thing.

W.Swets: Can | put it like this: that reference which we have in our
heads is any ratio we have become accustomed to. You say that
when we hear a tempered third then we hear a third in relation to
a pure third (386 cents) and we keep that in mind. But isn’t it so
that if we had e.g. a third with a very complicated ratio it becomes
ours by having listened to it every day? If [ made a special flute,
like a primitive shepherd for example, and my religion tells me to
make a gap on a certain place and it produces a certain third and I
get accustomed to it - it is that which makes it possible for me to
produce that third any time I need with the restriction you
explained just before. Isn't it like that?

J.Tenney: I think our cultural experience is very important here. But
I still think that even some very exotic interval is going to be
“understood” (not, I repeat, in a conscious, cognitive sense), but
spontaneously interpreted by the nervous system in this way, as a
variant of the simpler, “referential” interval.

W.Swets: No... for example, the equidistant 7-tone scale of Thailand.
Someone born over there has his third in that scale.

J.Tenney: | would suggest that in that case there are cultural reasons
for maintaining the temperament, let’s say, or the tuning. But even
there my sense of it is that the shepherds or the Thai musician’s
third is a variant of the simpler third. If I draw a circle, freehand,
and then begin to talk about “the circle”, you all know what I'm
talking about, even though it may deviate a great deal from a
perfect circle. For some reason, perhaps having to do with energy
conservation or some minimization process, we “understand” this
as a circle. I don’t mean this in some “platonic” sense, but as the
simplest form within a certain tolerance range of what Ive
actually drawn. I think something like that is happening with these
ratios in auditory perception.
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B.Thornton: Why is that not platonic then?

J.Tenney: Because its not like it exists somewhere else. It has to do
with the function of the nervous system.

B.Thornton: A platonic idea exists as a function of the soul. You've just
given it a different meaning.

J.Tenney: Yeah? OK. I was unnecessarily anticipating an objection
that hasn’t actually arisen. Whatever it is, then!

A.La Berge: You could just see neural science as a philosophy.

B.Thornton: Its OK - what youre saying in a sense is that you don’t
want to look at it philosophically.

J.Tenney: | don’t think of it philosophically. I think of it as something
physical. I think of it as a physical manifestation of operations in
the nervous system.

C.Barlow: I don’t see why there should be any conflict between the
idea of, for example, understanding the semantics of a third of 5/4
or 81/64 or whatever and still singing it somewhere else or
playing it somewhere else. But it could have a certain semantic
context which could be described in terms of a lattice system, or
my own continuity field system, or whatever. At the same time,
however, certain timbral vibrancies might excite you so that you
can move off. All these intervals have their own timbral attraction.
For example, the sixth we heard yesterday in the recording played
by Wim van der Meer - that sixth could have a semantic 5/3
meaning while being sung where it was sung.

W.Swets: Do you seriously believe that a person somewhere in
Central Africa who has his own third which is not 386 cents — he
has in mind that it should be?

C.Barlow: I'm not saying that everybody is conscious of the workings
of the brain. We are not all experts in how the brain works. We
here who are thinking about things like this can talk about the
brain and its workings. But, to take your very example: the
language of somebody living in the middle of Africa contains a
certain “Ah” sound. Does he think about the formants causing that
“Ah” sound? No. But they are there.
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W.Swets: No, I don’t mean that. Say that I go over there and I meet
that person, and I tell him “This is a perfect third”, and I play for
him 386. He hears that it is consonant, because his ear is like ours.
So he will be conscious of the consonance of it. But if he likes it is
another thing. Now had I not gone there and not performed for him
that perfect major third, would he then have had the imagination,
without hearing it before — because it’s not there in his culture -
would he have been able to imagine that there is such a thing as a
perfect third? No!

J.Tenney: We can draw ellipses, we can draw all kinds of shapes
here, right? We can speak about preferring one shape to another,
but thats not what I'm talking about. I'm not talking about
preference.

W.Swets: No, no! [ speak about imagination. The capacity to imagine
this perfect interval is not there in that culture. Now, just one
moment - this is very important. In our culture we did not use
equal temperament before 1700. In our time, we think in equal
temperament, we live with equal temperament, and look at the
problems we have in our ensembles in Europe when we want to
play mediaeval music in mean-tone tuning. Who can now sing in
mean tone?

C.Barlow: I don’t think Jim’s talking about that. We should listen to
what Jim has to say. A subject like this is a very basic one.
Actually its the very question - should one think about intervallic
relationships at all or not? Should the Ratio Symposium take place
at all or not? That is the basic question. I think that as we are here
we assume that it should.

W.Swets: Yes. The thing is, we love a ratio to which we have become
accustomed, not because it is 5/4. It might be 2351/1020. But if we
love it, we love it. That is the point, and that is why we have
ratios.

J.Tenney: Thats one reason why I introduced my topic by saying
that there is a whole other aspect of pitch perception that is
essential, not only in our day-to-day experience in the world, but
in many kinds of music. Harmonic perception is not always
happening. It can only take place when we have stable and salient
pitches. We must hear a sound as a precise pitch, and it must
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remain fairly constant long enough for the nervous system to
process it. And there is lots of wonderful music that has nothing
whatsoever to do with this. To begin with, even in the West the
percussion ensemble literature is working with sounds for which
it is irrelevant whether they are clear pitches or not. The actual
pitch of that wood block doesn’t matter to us, we speak of higher
or lower.

And thats relating to the first aspect of pitch perception that I
talked about. It's essential, its musical, and its important, but its
different. Many musical cultures make very precise distinctions as
we do in our culture, even when they modify them. For example, I
would suggest — though I have no way of proving this - that the
Thai seven-tone equal temperament was chosen historically,
evolutionarily, because it contains pretty good approximations to
perfect fourths and fifths, but there is also a wonderful ambiguity
about the thirds. The third is kind of a neutral third - it can
function in some ways harmonically like either a major or a minor
third. And that ambiguity is important.

Our twelve-tone equal temperament exists not because twelve is a
nice number to divide things up into, or because it has interesting
group-theoretical properties, which serial thinking might suggest,
but because it developed as an approximation to 5-limit just
intervals. Similarly with Indonesian pelog and slendro scales.

[ think they were chosen or selected historically because they
suggest certain harmonic relationships, but they also carry some
ambiguities that are interesting and musically useful. So when I
suggest that these simple ratios are referential, I'm trying to avoid
what [ take to be a wrong headed dogma held in some quarters of
the just intonation community, that these simple ratios represent
the only proper way to tune things. I don’t agree with that. I think
all kinds of tuning systems are potentially useful, including
equal-tempered systems, but I still think that even the tempered
relationships are being interpreted by the auditory system, quite
unconsciously, as functioning like the simplest ratio within the
tolerance range. Thats all I'm suggesting.

W.Swets: [ don’t agree with that. That it is referential, ok, but not in the
way you interpret it.
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H.Touma: I agree with Wouter. [ think if you try to play a melody
which is originally Arabian on the piano, an Arab will be shocked
and will reject it. He will not think of it as referential, he will say
it is wrong. So what you are trying to say here, maybe, is you are
trying to find a universal which has no basis.

J.Tenney: Wait a minute - the piano is not a good representative...

H.Touma: Or the saxophone or any tempered instrument: when an
Arabian melody is played on it, it will not function as referential to
any Arab familiar with that music - he’ll reject it, he’ll say it’s
wrong, it has no spirit - that is the word they use. It has no spirit!

C.Barlow: Maybe we can discuss this tomorrow. Both of you are
questioning the very existence of this kind of thinking, so let’s go
through with the thinking itself and then discuss its existence.

J.Tenney: Let me say a few more things that can’t be argued with.
First of all I am a composer, and only secondarily and occasionally
a theorist. This notion of harmonic space serves me as a composer.
[ can see my music as activity in harmonic space, motion in that
space. | almost imagine these points like little lights that flash on
when a certain sound occurs. It’s also useful in scale development,
for working out new pitch sets, new tuning systems. | have in fact
done many pieces where the tuning of the piece developed out of a
lattice like these diagrams I've used for this talk. The reason I said
it can’t be argued with is that this does not interpret something
else. The problem of applying these ideas to pre-existent music is
large, of course, but I just ask you to realize that I am quite aware
that there are many different factors involved here. Even if I'm
right on the referential character of simple ratios, there are so
many other factors crucial to the final result in a tuning system, or
to what a music sounds like, factors of history, organology, or of
ambiguity, extremely valid in art - in this context, the ambiguity
that can arise when a given tone, precisely because it is mistuned,
can function harmonically in different ways, suggesting different
relationships without even being changed, just by a change in its
context. If you start considering all these other factors it becomes,
of course, very complicated to try to describe an existing music. I
certainly don’t suggest that something as mathematical or abstract
as this harmonic space model could be in any sense a complete
explanation of musical activity. But it might be one component.
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1 from and after P. D .Anderson: Clinical Anatomy and Physiology for
Allied Health Sciences, W. B. Saunders, Philadelphia, 1976

2 after Georg von BUkUsy: Experiments in Hearing, McGraw-Hill, New
York, 1960

3 I'm not the first person to conceive of pitch relations in a ratio lattice
structure; important work has already been done in this respect by
the American composer Ben Johnston and the British scientist
H. Christopher Longuet-Higgins, among others.

4 according to ratios given in P. Sambamoorthy: South Indian Music, The
Indian Music Publishing House, Madras, 1963.
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Tuesday 11:15
Pascal Decroupet

Logic and Permutation in the music of Tom Johnson

What amazed me the most when I heard a concert performance by
Tom Johnson (=7T') for the first time was the fact that this
composer didn’t seem to hide anything about his craftmanship.
Either he explained what was going on in the music he was
playing, or the process was presented in such a transparent way,
that it was possible to follow the logical evolution of the music
without any other information: the music was in a certain way
“self-explicit”.

T's attitude towards music shares with minimalism the
exploitation of a restricted sound universe; but in a sense, he is
more radical, at least in his compositions since 1979, from which
the following examples are taken. Indeed, the formal logic
operating as the basis of his production either generates infinite
processes which are presented only partially (everybody could go
on beyond or begin the process earlier), or displays all the possible
combinations of a limited material ordered by an overall and
directed form-process. Directionality becomes here an essential
instrument to render the music predictable, a central aim of U's
compositions.

Before analyzing different types of T's algorithms, two elementary
conditions of his music must be mentioned. First of all, as the
composer explains in his introduction to the Rational Melodies, this
music “may be played by any instrument, in any octave or
transposition”® This is not a music for a specific sound. Secondly,
the pitch-scales are always constructed by rational devices based
either on a cyclic repetition of one interval or on a regular
alternation of two intervals. These scales are systematic in their
progression and don’t serve any purpose of expression.

Let us look at a first example (Ex.D. The principle: a sequence of
seven pitches is constantly repeated and arranged in different
groupings of increasing number - first section: group-density |,
second section: group-density 2 etc.

2 The Ratio Symposium



Consequently, each section needs a number of pattern repetitions

equal to the density index of its grouping. Furthermore, each
section starts with a low I[CI, the first note of the pattern.

Unexpectedly, the piece ends with a first group of eight notes.

Ex.1 - Rational Melodies No4
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T explains:

The logic could lead to eight-note phrases, nine-note phrases
and so on to infinity, and it is often difficult in such cases to
decide where to cut it off. It would be just as logical to stop
with the first seven-note phrase, which finally gives us the
complete melody unbroken; or with the last seven-note
phrase which completes 49 (7x7) bars; but I ended with the
first eight-note phrase, the first one that begins and ends with
the primary low C. Did I make the best decision? This is a
good example of how, even when one is committed to making
choices by strict logical deductions, one may still be forced to
choose between several equally persuasive logics.?

It is remarkable that if one looks at the piece independently of this
description, the last sequence raises an interpretational ambiguity
for the whole piece: is it really based on a seven-note melody? Or
is it an eight-note melody linked to its repetition by the principle
of the common tone? From the latter point of view, to end with the
first appearance of the complete melody would be the most
striking solution.

The case is similar in Rational Melodies Nol: the counterpoint of a
six-tone melody and a thirtyseven-note rhythm result in a rest of
one note at the end of each rhythmic sequence. Both patterns are
repeated until the return of the first phrase, each sequence
beginning with another pitch, reflecting the six-tone melody on a
higher structural level. This relation between melodic micro-form
and structural macro-form seems in the present case to be a
secondary result of the primary contrapuntal process rather than
an intended feature. But there are other pieces in T's production
where “self-similarity” works as the basic compositional device.

In recent times, the notion of “self-similarity” is usually related to
Mandelbrot’s fractals and to chaos theory while in composition it’s
an old objective. Schoenberg called it “economy”. The two following
excerpts (Ex.2) present the same procedure, once in a melodic
interpretation, once as compound melody or “virtual polyphony”.
In both, the basic progression is a descending chromatic four-note
pattern. In the melodic version (No8), the different layers of the
hierarchy become perceptible through the different durations of
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the notes at each level, groups of shorter durations being always
completed before a sound of the next higher layer appears. In the
virtual polyphonic version (Nel0), the hierarchy is translated by the
tempo in which the sounds move in each voice. The upper voice
repeats the motif every four bars (totalling sixteen occurrences);
the middle voice moves down one degree every four bars
(displaying the pattern four times) ... and the lowest voice is heard
only once (in this excerpt, it progresses one step down while the
other two voices come back to their starting point).

Ex.2 - Rational Melodies No8 and No 10

o

=
No8 Hs— |
A3 — |

o

¥ 1 | | | | | ]
LA | | | N | |
0] Ld ot I &> & I e & I ]
N—lo & & I & I & | & |
h e e ——— —" e ———— =" e ———— e ———
¥ 1 | | | | | ]
LA h | | | Ly | |
I.{@B'/ii T 74%7417%711747744774'
o > > K > > > K K
¥ 1 1 I I ! I I ]
L2 h | | | L | | ]
HS v I - | [ & & | [ X | [ ]
I \;j} b 1 r/\ 1 r/\ 1 r/\ 1
¥ 1 | | | | | ]
LA h | | | N | |
Ry T I & & I P& & I I
; [ & > [ > [ > [ [
A —1 r__ ) P— | -—.___ — | "--_,.
¥ 1 | | | | | ]
LA h | | | Ly | |
L - | | | |
I‘_{%I & I C‘B—C I C‘LB—C I & & I8LC
i o o o o - o -

Decroupet: Logic and Permutation in the Music of Tom Johnson 5



Lets read through the score of Rational Melodies Nol6 (Ex.3) phrase
by phrase, trying to understand the process as early as possible, so
to be able to predict the next sequence. In the first phrase, we
notice a phenomenon of self-similarity: the first sixteen pitches
are identical to the initial pitches of the first sixteen four-note
groups. At the [e] in bar 9 (marked “a”), a retrograde begins: this
[e] is an axis of symmetry. This observation doesn’t really fit into
the usual rules of self-similarity, but there isn’t yet an answer to
this exception and so we have to go on. In the second phrase
(marked “B”), we find a similar combination of self-similarity and
symmetric arrangement.

Ex. 3 - Rational Melodies Nol6
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The phrase shape is however Ex.4 - The formal scheme of
different: it reflects the second Rational Melodies Nol6
part of the first phrase (from

[

o”) transposed to the initial ~Whole-notes:

pitch [d]. And the length is half :

the length of the preceding 9 ° , d -
phrase. This process goes on d e d -
until the phrase is reduced to d e d-
the  neighbour-tone  figure T
[d-e-d], the skeleton of all the ded-
phrases. This results in the . d
o

graph in Ex.4.

At the back of the collection, T gives another explanation:

Special rules are used for inserting new notes between each
pair of existing notes, in order to make the melody twice as
long. In this case we begin arbitrarily with the scale degrees
1-2-1 and proceed by examining each pair of notes. If they are
adjacent we insert the next highest scale degree between the
pair. Since our first pair of notes is the adjacent pair 1-2, we
sandwich in the next highest note, giving us 1-3-2. Since our
second pair is 2-1, we again insert a 3, giving us 2-3-1. Thus
the second level of our melody ends up as 1-3-2-3-1. The
derivation process continues in this way:

1 2 1
1 3 2 3 1
1 2 3 4 2 4 3 2 1
1 3 2 4 3 5 4 3 2 3 4 5 3 4 2 3 1
123423453456453424354654354324321

Several curious things occur as side effects of this logic. The
second half of the pattern always ends up as the reverse of
the first half. The sequence moves one scale degree higher
with each level. The melodic motion is of one type on the odd
levels and another type on the even levels. The actual piece
consists of the first seven levels, presented in reverse order.3

Going back to the score, it is now evident that the second phrase
(from “P”) reproduces the first by taking every other note only.
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In his book Kunst und Computer (1971), Abraham Moles gives the
following definition of “permutation”, a device of which he shows
the different applications in different arts and to which he devotes
a whole chapter of his book:

Permutation is a combinatorial procedure on simple elements
of limited variety through which the immensity of a field of
possibilities becomes perceptible. [ . . . ] Permutation realizes
precisely the variety in the uniformity which is a fundamental
element of all work of art.4

To show the whole potential of such a field, all the possible
permutations of a limited material need to be presented.

Two examples taken from literature will illustrate this (Ex.5). The
words may vary in their outer shape according to syntactic
necessities: the principle is the positioning of the word-roots.

Ex.5- Harry Chagrin damour dure toute une vie
Mathews: Chagrin d’amour vit tout en dur
. . Chagrin de dur aime toute une vie
Le savoir des Rois. Chagrin de dur vit tout amour

Poémes a proverbe Chagrin de vie aime tout dur
“Trois Carrés Chagrin de vie dure tout un amour

Lescuriens” No25 Amour de chagrin dure toute une vie
Amour de chagrin vit tout en dur
Amour de dur chagrine toute vie
Amour de dur vit tout en chagrin
Amour de vie chagrine tout dur
Amour de vie dure tout un chagrin

Dur de chagrin aime tout une vie
Dur de chagrin vit tout en amour
Dur d’amour chagrine toute vie
Dur d’amour vit tout un chagrin
Dur de vie chagrine tout amour
Dur de vie aime tout chagrin

Vie de chagrin aime tout dur

Vie de chagrin dure tout un amour
Vie d’amour chagrine tout dur

Vie d’amour dure tout un chagrin
Vie de dur chagrine tout amour
Vie de dur aime tout chagrin

Ernst Jandl®: a shape-facing lift
a lift-shaping face
a face-lifting shape
a face-shaping lift
a shape-lifting face
a lift-facing shape

— et el s R R R R W W W W W W DN DO DI DI DD e e e e
RN W W RN WD = = R R NN = = R R W == R W NN
W N RNDW N W= W N =R = RN Wk =W W RN W
DWW =N WlNW == RNk =Wk Wk NWN R Wk
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The poem by Harry Mathews, a member of OULIPO (Quvroir de
littérature potentielle), is paradigmatic of strongly directed overall
forms encompassing all possible permutations. It evolves from a
certain arrangement, quoted here from a proverb, to its reverse
form, using at different higher levels the progression of the
elements in the first line. The first columns of the four attendant
blocks of digits reflect this original order; the second column of
each block progresses two by two in the same way the last three
terms of the first line of each block respectively do etc.

The extreme lines of Jandls poem, where the first element doesn’t
enter into consideration because it is fixed, are also the reverse
form of each other. But the progression is not linear: inside the
overall evolution from up-movement to down-movement, the
steps are inversed around the center. If I define the linear
progression as going from 1 to 6 (as in the Mathews text), for
Jandl’s poem the result will be 154326.

These examples are all based on three and on four elements. In T's
Tango and Music and Questions, the melodic reservoir consists of
five notes grouped according to the same rule of progression as in
Harry Mathews poem. In each sequence of six groups the first two
tones are fixed while the others go through permutations.

This conception of permutation is completely different from the
way Karlheinz Stockhausen, for instance, used this device in his
Klavierstiick VI (1954/1955). A six-note form with a characteristic
distribution over the range is multiplied on different levels (central
tones of groups and their whole pitch content) by means of self-
similarity but then permuted so as to break the repetition of this
peculiar shape. Permutation helps to avoid isomorphic structures
and is therefore nothing but an instrument to guarantee an a
priori aesthetical desire of non-repetition on a microcospic level.

From T's point of view however, permutation is a principal tool
for looking at an object from all possible perspectives. This implies
exhaustivity so as not to lose information potentially contained in

the material. Again, T's @sthetic position is close to ideas of
Abraham Moles:

The work is an experiment. If it is not good, it is possible to
begin it anew.?
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T about systems:

If you decide to use a system, you have to respect it so as to
discover the music while you compose it. But if you want to
change the logic evolution of the process, then there is no use
or business to use a system. This is a romantic attitude. If the
result of a system is unsatisfactory, you have to change its
basic rules, not to “correct” it here and there.®

Exhaustive presentation of a limited sound material is also the
purpose of one of the sections of Music for 85 (Ex.6).

Ex.6 - Excerpts from Music for 88
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In the first example (11x(5+3)), the chromatic scale is used step by
step, progessing in both directions: each motif characteristically
shows the possible degrees of the pitch collection (+4, -3, +2 / -2, +1),
indicating on the melodic level a progression from extreme
positions to a more centered tone or at least diminishing the range
of the motif by each up and down movement. The two parts of the
process will meet each other at the end of the piece a little bit
higher than the center of the musical space.
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In the second example (11x(2x4)), the progression inside the motif is
simpler - a scalar chromatic movement - but with a gap between
the end of one motif and the beginning of the next one in the same
voice: this gap will be filled symmetrically to the center of the
piece by the process of inverted direction, so that the two
processes cross each other and both go through the whole range of
pitches.

To end, lets recapitulate the different examples from the point of
view of ratio in its sense of proportion.

Ratios take part in the organization of T's music either as basic
principles or as result of other devices of structuring.

- The pieces counterpointing melodic and rhythmic patterns of
different length use ratios as a fundamental definition of the
formal logic.

- In the music based on the principle of self-similarity, the ratios
between the different structural levels are not contained in the
basic rule of the piece but are a supplementary decision: in the
melodic example, the ratio from level to level is 1.2; in the
polyphonic one, 1:4.

- In the permutation pieces finally, ratio is limited to the number
of elements that will be permuted: one part of the elements is
fixed, the other is internally mobile. This may also be expressed
as proportion. In the case of Tango the ratio is of 2:3.

Tom Johnson, Rational Melodies, p.2
Tom Johnson, Rational Melodies, p.36
Tom Johnson, Rational Melodies, p.38

Abraham Moles, Kunst und Computer Cologne: DuMont, 1973, p.104
(my translation)

5 in: OULIPO La Bibliotheque OQulipienne Jacques Boubard (ed),
Geneva/Paris: Slatkine, 1981, p.36

6 Ernst Jandl, Gesammelte Werke vol.2.,
Darmstadt/Neuwied: Luchterhand, 1985, p.63

7 Abraham Moles. op. cit. p.111 (my translation)
8 Personal communication to the author in November 1992
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Tuesday 12:15
Volker Abel
The Mutabor II System of Computerized Intonation
1. Abstract

Microtonality - or, to be more general: microtonal structures - is a
multifacetted subject. This is evident in the light of the fact that it
utilises no standardised notation or vocabulary.

Against this background, we have designed a simple yet
universally applicable formal language for dealing with
microtunings in a comfortable manner. Static tone systems and
“mutating tuning logics” of any kind possess similarities on an
abstract level. The idea of a “fundamental tone scale”, reproduction
rules and an abstract meaning of re- and detuning have been
developed into a concept, implemented in the computer program
Mutabor II, which offers a new experimental approach towards the
phenomena of ratio, proportion, temperament and microtonal
structures in general.

2. The representation of static tone systems

In our concept of the representation of microtonal structures there
are two “hidden premises” that have to be mentioned in the
beginning: one is that we consider the meanings of “frequency” and
“tone” as the same thing. We concentrate on pitch, but not on
timbre. Of course, that is a strong limitation, but it is not yet
possible to formulate a precise relationship between pitch, timbre
and other influencing elements. The second premise is that our
concepts are keyboard-based, so we give a representation of
microtonal structures that can be applied to a keyboard
instrument’s performance.

Looking for a general parameterisation of microtonal scales, we
had to notice that on the one hand, a formalism has to be as
intuitive as possible — on the other hand, we had the demand to
reach a state of universality: the model has to fit to historical tone
systems as well as to inventions of New Music including enough
space for further experiments. The most obvious representation of
static tone systems (as we think) is as follows:
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Many kinds of music show the “octave equivalence” phenomenon,
whereby tones related by a multiple of an octave (ratio 2:1) are
equally treated - the complete amount of tones is divided into
equivalence classes. In our terms: the frequencies can be derived
from a prototype tone scale and a reproduction rule. This
reproduction rule is usually a frequency translation with multiples
of the equivalence or period interval (not necessarily 2:1).

For a plain definition, we need exactly three parameters: an
“anchor” (the key or tone where the prototype scale starts), a set of
interval relations or frequencies of the prototype scale’s tones and a
“reproducing interval” (first we’ll only allow simple reproduction
rules with a single and constant period interval; this concept can
be expanded later). It is easier to handle these parameters if we
add a fourth one: the “width” of the prototype scale, meaning the
number of keys (or tones) it contains. The width is a simple hint
for the complexity or redundancy of the tone system (equal
temperament scales require a fundamental tone scale of width 1).

To summarize, every static tone system can be represented by the
four parameters anchor key, width, interval relations and period
interval, collectively termed a fundamental tone scale - see [1.

[l - The fundamental tone scale

period interval

width

anchor key

Some examples shall now demonstrate the use of the principle of a
fundamental tone scale:

To define the Pythagorean scale or a mean-tone scale (both
representative of an octave-based twelve tone scale) a
fundamental tone scale of width twelve is needed. The period
interval is of course the factor 2:1, and the anchor key is usually set
to the harmonic or melodic center of the scale, e.g. to Middle [C].
Finally, we define the interval relations (or frequencies) of the
twelve tones inside of our prototype scale.

Abel: The Mutabor Il System of Computerized Intonation 3



Consider equal temperament scales: they are “structureless” and
can therefore be interpreted as a fundamental tone scale of width
one with a period of the equal temperament interval. To define a
quarter-tone system, we just need to set the anchor key (for
example [A]) to a fixed frequency (here 440 Hz) and take a simple
period interval (factor */2). You can get any equal temperament
scale just by changing the period interval.

Of course, there are rules for static tone systems which cannot be
conveniently expressed in terms of a fundamental tone scale,
because they do not have a periodic interval. An overtone scale is
an example for a non-periodic system (in our terms of a periodic
interval relation). Assume that we want to play an overtone scale
on the white keys of the keyboard. We have to define a
fundamental tone scale of the type “free definition”, meaning that
the fundamental tone scale contains as many tones as there are
keys on the keyboard. Every key will get its own frequency, and
there is no (relevant) period interval.

3. Mutating tone systems

Now that we’ve found a general concept for the representation of
static tone systems, we will try to apply those ideas on a definition
of mutating tone systems:

The basic idea is to have a finite and discrete amount of tones
which can be played at a time (represented as a fundamental tone
scale) and a set of mutation rules, creating an enormous number of
different tones during a piece in an almost continuous way.

A mutating tone system is a discrete variation of the fundamental
tone scale’s parameters in time, caused by external events.

At the beginning of a piece, there is an initial state that can be
represented as a fundamental tone scale. During the piece several
events produce changes in the tuning. Specific rules control the
changes of the tuning dependent on the different events that occur.
We call this construction a “tuning logic”.

Since a tuning logic is a set of rules of the form event = retuning,
we still have to define the meaning of “event”. Principally, an event
shall be everything that a computer can recognize, when it is
connected to a (MIDI-) keyboard. For Mutabor II that means keys
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pressed on the computer keyboard, MIDI messages and - an extract
from MIDI-messages - patterns of keys pressed on the music
instrument keyboard. The last one is the most important, because
the analysis of key patterns allow the use of simple (or later on
more complex) harmonic analysis to control the tuning. You may,
for example, construct a tuning logic that changes a harmonic
center (this may realise the idea of the tonal net) and sets the
micro tuning harmonically based on that (moving) center.

This leads to the most fundamental principle of Mutabor II: the
frequency of a tone is calculated directly after the player has
pressed a key, depending on the active tuning logic (which may
depend on just the key that was actually pressed). The speed of
this calculation has to be fast enough to produce the sound without
a delay, but that is no problem for modern computer hardware.
This concept makes it possible to play an infinite number of tones
on an instrument with a finite number of keys, because it is
possible to construct a tuning logic where the retunings are not
done absolutely, but relatively depending on the current state,
especially if such a rule is linked with a harmonic (or better: key
pattern) analysis.

4. A programming language for microtonal structures

The principles of a fundamental tone scale (with the four
parameters anchor, width, tones and period interval) and a tuning
logic (which means that events produce retunings) can be
formulated as a programming language for micro-tunings.

The Mutabor II System of computerized intonation is one possible
approach to the integration of two important concepts: A
programming language offers unlimited space for experiments, but
it has to be easy to handle. We have defined syntax and semantics
of a simple programming language, within which the user can
express how the instrument is to be tuned, and the way the tuning
has to mutate. The user enters this “tuning program” as a text file
into the computer, and Mutabor II will set up this tuning as a
(MIDI-) keyboard = computer = synthesizer/sampler installation
for free performance.

Abel: The Mutabor Il System of Computerized Intonation 5



This article ends with the following examples demonstrating a
simple Mutabor II program for two static tone systems: a
quarter-tone system given the identifier “Quarter_tone” and an
excerpt from the tonal net around Middle [C] (“Tonal_Net_C”) -
look at [2 and [3: in the latter, the “60” and the “69” represent the
anchor key’s MIDI number (i.e. Middle [C] and the [A] above it). The
microtone programming language syntax implemented in Mutabor
Il includes some further elements to program mutating tuning
logics, but they are as intuitive as those in the list below and
needn’t be explained in detail.

[2 - The tonal net around C [3 - Static tone system definitions

(Chromatic scale shaded)
TONE

i i i i i C =G - fifth
Db = F - third
D = A - fifth
Eb = G - third
- E=C+ third
F = C - fifth + octave
- F# =D + third
G = C + fifth
~ Ab=C - third
A =440
Bb = F- fifth + octave
B = G + third

TONE SYSTEM
Tonal_Net_C =
60 [C,Db,D,Eb,E F F#,G Ab,A,Bb,BI
octave
Quarter_tone = 69 [ A ] quartertone

INTERVAL
octave = 2:1
fifth = 3:2
third = 5:4
quartertone = 24 root 2
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Tuesday 15:00
Hartmut Méller

Trying to understand Horatiu Radulescu’s String Quartet Op. 33
“Infinite to be cannot be infinite;
infinite anti-be could be infinite”.

For whoever will express the music of the heavens
most fittingly, to him Clio grants the crown and Urania
will give him Venus as his wife. (Johannes Kepler)

Every effort to draw a map of rationality, its clarity and coherence
is obscured by paradoxes, riddles, dilemmas and practical
self-references. And beyond the different attempts to construct a
consistent, plausible model of rational human action, there still
remains the immense gap between description and application to
human action in fact. For centuries the question remains open,
whether music is art of the irrational or of the rational. Proceeding
on the assumption that music contains both opposite poles, then it
seems appropriate to explore the connnection of this duality in
special objects.

In the case of the theoretical and compositional work of Horatiu
Radulescu (= FR), I shall concentrate on his String Quartet Op. 33
for live string quartet and eight prerecorded string quartets . In
the first part of my talk I shall try to find a path through this 49
minute work. In the second part, I would take the risk of bringing
the quartet into a broader context: its concept of form, the
question of meaning, rationality and irrationality.

[ do not see my task in simply duplicating the composer’s
explanations or concentrating on technical questions - for example
in linking the quartet with the central categories of spectral
technique for which MR laid the base in 1969 and which he
described in his treatise Sound Plasma - Music of the Future
(1973): variable distribution of spectral energy ("spectrum pulse”),
synthesis of global sound sources, processual micro- and
macro-form, different butsimultaneous layers of perceptual speed
and spectral scordatura (scales of unequal intervals corresponding
to harmonic scales).
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As a music historian interested in the place of our time’s music in
history, my task is not only to tell stories but to think about the
hidden premises and assumptions, the ideological baggage of our
telling stories to support our Western, rational identity. I must
confess from the beginning that the reason why I personally got
interested in this quartet is not because it is based on overtones,
but because I realized in which sense it is a work of art which has
to say something to us. Therefore I tend to view it more from the
aspect of art work than from the technical details of the
scordatura &c. (Who would take Bach’s Goldberg—variations only
as a starting-point for going into Werckmeisters system of
temperate tuning?)

L.

R’s String Quartet Op.33 was composed from 1976 till 1987. The
quartetdivides into two macro-forms, o (alpha) and 3 (beta), represented
by one live string quartet and eight string quartets, live or
pre-recorded. Imagine a concert hall, where the live quartet is
placed in the center of the space, surrounded by the audience, and
all around, at the distant margins of a larger circle, there are eight
other string quartets, live or pre-recorded. R speaks of an
“imaginary 128 string-instrument” or of an “imaginary circular
viola da gamba with 128 open strings”. There is no score for both
groups, but instead two independent scores, one for each group:
the one quartet in the centre and the eight string quartets
surrounding the audience. It's a special way of part-notation
(Stimmbuchnotation), which comes together only in the moment of
realisation. To get insight into the simultaneousness and
development of these two groups « and P, both scores are to be
simultaneously read.

Moeller: Trying to Understand Radulescu’s String Quartet Op.33 3
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Two scores, two ways of living

“Do not ... the fragments of the self each of us believes
to be sometimes converge and achieve unity or a
semblance of it?” (Siegfried Kracauer)

Lets start with the score B of the eight string quartets (see Figure 1
on the preceding two pages). Every page of this score is divided into
six colums of ten seconds. At the left margin you find the numbers
of the strings used. The total number is 128 (eight quartets with 16
strings each). These numbers refer to the imaginary “viola da
gamba” with 128 differently tuned strings. The 128 strings are
spectrally tuned: they use 128 different frequency components of a
fundamental C (at 1 Hz) between 36 Hz and 641 Hz; that ranges
from D1 (the lowest D on the piano) to ca. ES, the E in the octave
above Middle C. This scordatura has nonequidistant intervals and
no isomorphy at any octave.

There are several types of micro-music acting on the great
scordatura with different inner life (deep structure) and different
sound production assigned (bowing and/or special techniques of
fingering). On the first two pages given in Figure 1 you see two of
these types (others I shall point out later): first a so-called
o—(delta)-micro-music, then a p-(rho)l-micro-music and again a
o-music  with  different density. The o6-music is a
dilation/contraction of a harmonic formant, as if this formant (or
chord) belonged to different formants (higher or lower) of a unique
spectrum. An easier example inserted on the left half of Figure 1
may show the principle of the 6-music: The middle ¢ is the inner
axis, which jumps (theoretically spoken) octaves upwards. In
relation to this axis the numerical distance of the harmonics
remain stable, and the result is transposed to the same register. In
other words: a spectral chord is jumping on various regions of a
spectrum, but keeping constant the vicinity proportions of its
elements; and this dilation/contraction is heard in the same
register. The special sound production assigned to the 6-music is
the “phase shifting” arco on open strings.

On page 2 of Figure 1, there starts another type of micro-music:
the p-micro-music, building up self-generative frequency plateaux
in live and explicite ring modulation, proliferating until meeting a
“vertical mirror”, an axis of “vertical time”, and then gradually
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fading out. In the given case the frequency-components 36 and 40
add up to 76, as well as 113 and 117 builds up 231. Finally 34 plus
231 results in 265 as the highest component. The sound production
assigned to p-music is a fast and irregular change of highest
possible natural harmonics of a string and “morse”-signals of the
open string, combined with a very fast and flautando bowing in
verso/sul ponte; both techniques intermingle in a fast and uneven
intermittence.

These are just the first three micro-musics, and only two types of
it. The macroform of the quartet § is built, in total, of 137 regions
of micro-musics with changing density, length, and type. Some of
these 137 micro-music modules are intersections of two or three
types or micro-music. Even if sometimes related, the 137
micro-music modules are all unique.

The live string quartet o (see Figure 2 on the following four pages) is
written in six blocks of ten seconds, divided into five time-columns
of each two seconds per measure. Thus, also for this quartet, one
page represents exactly one minute.

The String Quartet o is tuned to a’ (at 431 Hz) in normal perfect
fiftths (431 Hz is theoretically based on a C fundamental of 1 Hz;
that is: C is the fundamental of both quartets o and P). o uses self
generative spectral functions; many of the formants on which the
89 micro-musics are built, were deduced through ring modulation
of spectral functions.

Lets have a look at the first micro-music: it is tuned from C; the
four instruments play the frequency components 1, 21, 22, and 43.
From formants 21 and 22 emerge formants 43 and 1. The first
micro-music lasts 64 seconds, the frequency-components have
their own time-pulse marcati according to their frequency plateau.
Therefore the component 21 has a strict rhythm of 21 units per 64
seconds, the component 43 has 43 units, etc. The marcati >>>>> of
the proportionally strict rhythm issued of the authentical
time-pulse of the frequency-components are very important for
the individuality, the “inner life” of each micro-music.

Moeller: Trying to Understand Radulescu’s String Quartet Op.33 7



[2a - Score o of Radulescu’s Op.33: the first minute
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2b - Score a of Radulescu’s Op.33: the second minute
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[2c - Score o of Radulescu’s Op.33: the third minute
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[2d - Score o of Radulescu’s Op.33: the fourth minute
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[3b - Score a of Radulescu’s Op.33: the last minute
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Interdependance between time organisation and fundamentals

There is another important compositional procedure in connection
with the 89 micro-musics: Each micro-music « is tuned according
to its duration correlated as C =1 Hz = 1 second. So the procedural
question is: for which fundamental is C the harmonic, given the
duration of the micro-music? In case it lasts two, four, eight
seconds &c., the fundamental remains C (64 seconds is the
maximum length of an o music). In case the duration is, lets say,
three seconds: for which fundamental is C the third upper
harmonic? Result: the fundamental must be F - and the same is
true for a micro-music lasting 6, 12, 24 seconds, and so on.
According to the same ratio, a micro-music lasting 13, 26, 52
seconds has a fundamental D#” In Figure 2, four seconds after the
beginning of the second minute, micro-music number 2 begins,
lasting 62 seconds. The fundamental, for which C is the 62nd
harmonic, is a C: (55 cents above C). Summing up: In quartet «,
there is absolute interdependance between pitch and time; this
means, that the specific fundamental of every micro-music is
function of the strict duration of that micro-music.

During the whole quartet, o modulates through 27 spectra of
different length. They are all tuned in an acoustic fundamental in
function of their duration; in total, there are 89 micro-music
“windows” of pulsating spectral “orbits”, which modulate from and
into 27 different spectra. (The specific trajectory is a point, to
which I come later on). On this way through 27 spectra, o returns
16 times to the C spectrum, the length varying between 4, 8§, 16, 32
and 64 seconds. The first a-music (as seen in Figure 2) lasts 64
seconds, the last one four seconds.

The very end of the quartet is reproduced as Figure 3 (on the
preceding two pages). On the right page you find the last 30 seconds
of the o music, on the left the corresponding part of the B music:
after 20 seconds starts a p-micro-music with its “vertical” time-axis
at about 27 seconds. While gradually fading out, the quartet o
plays the following sequence of micro-musics: The five concluding
micro-musics (numbers 85 to 89) are constantly accelerating from
8 seconds over 7, 6 and 5 seconds to a last micro-music of only 4
seconds. The fundamentals go from C through D#, F, G# to a final
C. Thus, the first and last micro-music on this last page have a C
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fundamental; but both use different harmonics: the first, lasting 8
seconds, has the spectral functions 9, 11, 20, 31, 51 and two times
82; the last consists of the harmonics (2), 3, 28, 31, 59 and 90. In
both cases the functions can be deduced through ring modulation:
20+11=31 31+20=51 31+28=59 59+31=90
20-11=9 31-20=11 31-28= 3 59-31=28
The single functions pulsate the quicker, the higher their order
numbers are. (But given the short dimension of these final
micro-musics, they cannot pulsate direct-proportionally to their
role in the given spectrum.)

On the way to the infinite: the Golden Sections

“Were Pascal the mathematician, and Pascal the
Christian strangers to each other? ... it may be that the
antithesis, correctly considered, is only the mask of a
deeper solidarity”(Mark Bloch)

Now let us look at one specific point in the course of the quartet
which is (as you will see) of special importance for the overall
form: Figure 4 (on the following two pages) shows the minutes 29 and
30 of the B music. After a 6- and p-micro-music (which you already
know from the beginning of the quartet, see Figure 1), there
follows a “cluster” of eight elements, lasting 6 seconds; then a type
named “free” (two seconds, and afterwards a type of micro-music,
which in its graphic trajectory resembles that of “thundered”
lightning. Therefore this micro-music was named t (tau), which is
based on upstroke bowing and “lasciar vibrare” technique at
various points along the open strings (sul ponticello, verso
ponticello, normal, sul tasto).

The plurivocal designs are difficult to analyse aurally: register
tendency, polyphony/heterophony/melody, number of voices
(parts), speed/densitiy of distribution. Although periodically
written, the graphic display of those upstrokes is to be performed
with micro-agogical value-variations as in Baroque music, and
thus, nonperiodical. Simultaneous interventions create a
quasi-sudden and irregular arpeggiamento in between parts. And
then, at minute 30 plus 8 seconds, there starts a “free” music by
all 128 strings of the imaginary viola da gamba, lasting 58 seconds
(29 units of 2 seconds).

Moeller: Trying to Understand Radulescu’s String Quartet Op.33 15
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[4b - Score B of Radulescu’s Op.33: the thirtieth minute
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What about the o music going on at the same time? On the top of
the excerpt of the p score in Figure 4, I marked the places where
@ moves into a new spectrum: on page 29 after 20 seconds o
music number 33 starts (duration: 58 seconds), and on page 30
after 18 seconds is the beginning of music number 34 (59 seconds).
When this micro-music ends (exactly after 30 minutes and 17
seconds), an important point in the macro-form of the piece is
reached. FR’s little scheme added on the left side of Figure 4 gives
insight into his planning of the proportions for the o music of the
whole quartet. In the following diagram, I have added extended
HR’s scheme with informations concerning the fundamentals,
durations and numbers of those o musics where the trajectory of
the form is changing (see Figure 5). You see a trajectory
combining a wavelike movement: 21 elements plus 13 elements
downwards, then 21 elements downwards and 34 elements
upwards. The upwards/downwards path ends with a micro-music
based on a low C#, lasting 59 seconds (quite near to the temporal
dimensions at the very beginning: 64 seconds!) - but then, a
sudden jump to a high fundamental, F# over two octaves higher
and a resulting duration of only 11 seconds. And the end of the «
music after the dominant “free” type of the p music, beginning on
page 30 is just the point, where both trajectories come together.

Fig. 5 - Crests and troughs...
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2.

“ The antinomy at the core of time is insoluble. Perhaps the truth is that it can
be solved only at the end of the Time.” (Siegfried Kracauer)

When a line is divided in such a way that the smaller part is to the
greater as the greater is to the whole” - this linear ratio was
known already in Old Egypt and Babylon, it was described by
Euclid and later praised for its divine and magical qualities by
Leonardo da Vinci and Johannes Kepler (sectio aurea, sectio
divina). The golden section is always associated with organic
matter, and quite foreign to the inorganic world; because of the
irrational number in the formula, its occurrence in crystal-forms
is precluded.

As you see from the above-mentioned diagram, the macro-form of
MR’s quartet is a combination of two golden sections: 34 time-units
plus 21 in the first part, 13 plus 21 time-units in the second part
(the exact time of each section can be calculated by division
through 1.82). The point where the two trajectories come together
is exactly the point of the overall golden section: 55 plus 34. But
the temporal organisation is only one compositional domain which
is organised according to the golden section: Also the number of
micro-musics in every section is governed by the golden section;
in the first part 21 plus 13, in the second part 21 plus 34. Seen
together, their form is reigned by a highly elaborated ordering of
the Fibonacci numbers 13, 21, 34, and 55: in the first part, every
time-unit contains the smaller Fibonacci-number of elements; in
the second part, this relation 1is reversed: the higher
Fibonacci-number of micro-musics is contained in the smaller
number of time-units - resulting in the accelerating to the end we
already talked about.

“Beyond music”

If, as an experiment, we try to adopt Erno Lendvai’s famous and at
the same time problematic way of analyzing Barték, we would call
the division, in which the longer section is followed by the short
one, a “positive” division - and the corresponding one “negative”: a
short section followed by the long one. Viewed this way, the
macro-form is divided into a “positive” and a “negative” section,
which complement each other, comparable to something with its

Moeller: Trying to Understand Radulescu’s String Quartet Op.33 19



own mirror-image. The overall result, indeed, would be a positive
sign. So far a “formalistic” interpretation of the macro-form a la
Lendvai. But of course it is problematic just to count time- units...
And, what is more problematic: the macro-form of the quartet is
not built of dualities of “plus” and “minus”, but forms instead an
irregular and, nevertheless, constant increase of organic growth.
We should keep in mind, that the different means and layers of
“number composition” in this quartet are related to something
“beyond music” - as pointed out HR himself: “The depth-truth
beauty of the idea is further beyond music, and therefore
attracting the music towards that beyond”. But where is this
“beyond” situated? The quartets title “infinite to be cannot be
infinite; infinite anti-be could be infinite” is intended by R as the
attempt of a modern answer to Shakespeare’s famous “to be or not
to be™ “even infinite in its aspects, our being, our terrestrial
existence cannot be endless, but our infinite anti-being, our
eternal, cosmic being - throwing us, as a vibration, towards life
and towards death, could be everlasting.” (In the Rumanian
language, the title can be expressed only through different
intonations of one word in the middle [ nul: infinit a fi nu poate fi
infinit).

Seen from this perspective, the string quartet p represents in its
all-surrounding presence the “earth”; the starting-point and point
of return on the individual’s voyage between spectra. It begins
with a first slow attempt to raise and to accelerate, but calms
down again and returns near to the very low starting-point. The
beginning of the second part reminds us of the experience, which
a German proverb articulates wer hoch steigt, wird tief fallen : a
sudden mental jump high up into space, with accelerated descent.
Only the final trajectory upwards is successful, the accelerating is
not stopped and ends in a final spectrum - which enigmatically is
related with the beginning and also with the fundamental of the
sound universe - alpha et omega, harmonia mundi ... infinite to be
cannot be infinite; infinite anti-be could be infinite.

But who is able to perceive all these compositional procedures and
underlying ideas? They even arent recognizable in the score
(compared, for example, with Tom Johnson’s music in Figure 9) - 1
hear some of you object.
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Dufay the colleague

Proportions can be found in a large range of music by medieval
and renaissance composers, by Schubert, Ravel, Debussy, Bartdk,
Stockhausen, Nono, and many others. In some cases, these
proportions suggest only subconscious application by the
composer, and there are cases, where they tell us only little about
the music. On the other hand there are cases where composers are
intentionally working with Fibonacci series and golden sections.

In the following miniature IR is seen in conversation with an old
friend, “Maitre Guillaume Dufay” from Cambrai, maybe discussing
the possibilities of tonality, of microtuning or even the need for an
128 string harp. (With this I don't want to construct any kind of
direct relationship between the work of the two composers; I only
want to point out analogies in their formal concepts and in the
differenciation between the hidden and the audible.)

Fig. 6 - IR & GD
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Dufay’s famous early ballade “ Resvellies vous” was composed for a
wedding in 1423 at the court of the Malatesta of Rimini. It is a
piece extraordinarily rich not only in its melodic, harmonic, and
rhythmic material. As David Fallows puts it, “no other piece of its
time contains such a plethora of musical ideas; and it is all the
more astonishing that the work should hold together as a musical
entity.” Beneath the audible surface, however, there lies a threefold
silent system of number and proportion, which Allan Atlas
deciphered in 1987: gematria (the assigning of a series of ciphers to
the alphabet), Pythagorean number symbolism (the marriage
numbers 5, 6, and 7) and the golden section. In our context we
concentrate only on the last feature.

As you can see from the following diagram, Dufay uses the golden
section at three levels: the piece as a whole, each of the three
sections, and, at times, the individual phrase. As Allan Atlas has
demonstrated, important musical and symbolic highpoints of the
piece fall precisely on points of articulation, that form golden
sections at one of the three levels.
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Fig. 7b - Resvellies vous et faites chiere lye (No.11)

Resvellies vous et faites chiere lye Awake and rejoice,
Tous amoureux qui gentillesse ames, All lovers who love nobility.
Esbates vous, fuyes merancolye, Enjoy yourselves, flee melancholy.
De bien servir point ne soyes hodés. Be not unwilling to serve well,
Ca au jour d'ui sera lie espousés, For today will be the wedding

Par grant honneur et noble seignourie;

With much honour and noble company,
Ce vous convient ung chascum faire feste,

So it behoves each of you to make merry

Pour bien grignier la belle compagnye; And smile upon the guests,

Charle gentil, c’'on dit de Maleteste.  For noble Charles, who is of Maleteste.
[l a dame belle et bonne choysie He has chosen a good and beautiful lady
Dont il sera grandement honnourés; Who will do him great honour,
Car elle vient de tres nolble lignie For she comes of noble lineage
Et de barons qui sont mult renommés. And of lords well renowned.
Son propre nom est Victoire clamés; Her own name is Victoire
De la colonne vient sa progenie. From kings she is descended.

What is responsible for the audible fact that the work holds
together as a musical entity? The end of the first section and the
close of the refrain are identical, and there are correspondences
between bold juxtapositions of harmonies at the beginning and the
third part (m. 50-53 “Charle gentil”: g-C#), as well as between the
opening measures and their reinterpretation (m. 54-56). The
numerical unity, on the other side, remains unperceived, and -
according to Allan Atlas - “no doubt intentionally so.” But anyway,
Dufay placed the important landmarks in his piece with the
proportions of the golden section. Thus, Resvellies vous is, at the
same time, a tribute to the noble Malatesta famili, a musical
allegory of the wedding of 1423; it is “a joy to the melody-oriented,
early Quattrocento Italianate ear, and a treat for the ultramondane
scholastic intellect”. In another of his works for the Malatesta
family of Pesaro, Dufay uses the golden section in a way, which is
very similar to the scheme underlying FR’s quartet: In Vasilissa,
ergo gaude a vocal prelude of eight lines is followed by two talea
of thirteen lines - thirteen is not only the seventh number in the
Fibonacci progression, but also a symbol for the Byzantine
Emperor, who was considered to be the thirteenth apostle.
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Fig. 8 - Dufay’s Vasilissa, ergo gaude in semibreves, mensuration 0

G.S.

vocal prelude I talea 1 talea 2

72 117 117
189 117
306

The number 13 is of special importance not only in this piece:
Vasilissa, ergo gaude belongs to a group of three motets
commissioned for events surrounding the rela tionship between
Byzantium and the West. As you know, the desperate struggle of
the Byzantine Empire with the Turks ended in 1453 with the fall of
Constantinople. Dufay composed a Lamentatio Sanctae Matris
Ecclesiae Constantinopolitanae, also on a cantus firmus based on
the number thirteen. Vasillissa, ergo gaude celebrated the marriage
between a son of the Byzantine emperor and the daughter of the
Malatesta family. As you can see from the scheme, each of the
smaller divisions form golden sections; and the golden section of
the entire piece falls at the beginning of the second talea.

But what has Dufay to do with his younger colleague IR, what are
the analogies between motets like this and FR’s string quartet?

[ see the following parallels: the use of the golden section as a
means of structural articulation at different levels, the plethora of
musical ideas, some on the audible surface, others silent, and all
working together in the service of structural, aesthetic and
symbolic ends.
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Temporal subjectivity and multiplicity

In a work like MR’s string quartet we are confronted with a
multidimensional piece of art which demands our ability of
interpretation. As Susan Langer once formulated, “life is always a
dense fabric of concurrent tensions, and each of them is a measure
of time, the measurements themselves do not coincide.” Music, like
life, can also be - and is in many, many cases - “a dense fabric of
concurrent tensions”.

Our society knows a multitude of life-styles; each of us lives in a
variety of environments which are experienced more alternately
than progressively: One person can carry on several existences in
several places - lives that have little contact with one another.
Someone working at a computer, for example, will find little
continuity between his work among grey metal and blinking lights
and, say, an hour spent in a park together with his daughter, or
participating in a conference in The Hague ... It is as though the
various lives exist simultaneously, and the participant merely
checks each one periodically to see what has been happening. In
these increasingly subjective worlds of contemporary culture,
cause and effect is no longer the only possible relationship
between events. The temporal order in which we experience does
have significance, but that order is nonetheless fundamentally
irrational, without meaningful cause, without significant effect.

In contemporary music, there are indeed many pieces whose logic
is like the logic of contemporary life; many compositions since the
50% by Stockhausen, Boulez and Cage, Brown and many others are
multi-directional, composed of a series of minimally connected
moments. One part - but only one - of FR’s quartet can be seen in
this tradition: the B music with its planned irrationality of order
and durations takes part in the logic of contemporary life - or
better: represents the irrational temporal order we all experience.
This representation of contemporary time experience is
confronted in the o music with a different kind of life, a
development of those parts of our existence which are not bound
to the everchanging time in our terrestrial existence. Thus, the
two macro-forms are not just two “animals” (as FR once called
them in conversation), but a musical representation of that strange
being, called a rational animal.
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Fig. 9 - From four works based on the Fibonacci series:
T. Johnson: IV/bars 1-15 of Formulas (19??) for String Quartet [ upper middle]
M. Merz: Igloo Fibonacci(1970) [centre left]
Side view of Santa Maria del Fiore (1434), Florence [lower left]
K. Stockhausen: Cell scheme of Adieu (1966) for Wind Quartet [lower rightl
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Ratio - horribile ratio - irratio

Words like reason/reasonable, ratio/rational have a long history and
a legacy of ambiguity and confusion. As the philosopher Michael
Oakeshott put it, these words are like mirrors: “Like mirrors, they
have reflected the changing notions of the world and of human
faculty which have flowed over our civilisation in the last two
thousand years; image superimposed upon image has left us with a
cloudy residue.” We all take pride in being rational animals. But
what is “rational” and “rationality”? Many philosophers have
attempted to find out, what “rationality” means. However they
have not reached a consensus. Several attempts ofdistinguishing
different concepts of rationality exist (logical, practical,
methodological etc). And some people try to find out if there are
possible types of rationality beyond value-free science and
technology (Max Weber and his many followers answered strictly:
no). Others reflect on the “impact of science on modern
conceptions of rationality” (e.g. Hilary Putnam).

From my own field of music history writing I could tell a lot of
stories where assumptions about rationality are a largely
unexamined collection of cultural prejudices (and especially we
Germans contributed to this quite a lot), beginning with the
distinction between rational, male Frankish-Gregorian chant
versus irrational, feminine  Mediterranean singing, the
constructivism of the North versus the Kliangseligkeit of the
South, European versus Oriental, etc.; but also: speaking about
Pythagoras, and forgetting (or repressing) Orpheus and the
emotional, irrational side of music.

RATIO ? ! ? “Music is the most abstract of the arts ...” - at the
same time it is the most immediate, the most sensual of the arts.
Our ears, bodies and souls are not seldom in music’s hand.
Therefore numerical considerations are only one side. Since
antiquity aesthetic, ethic, theological considerations play an
important role, too (animos movere , effectus musices, etc.).
Leibniz" arithmetic exercise of the soul has its counterpart in the
thinking of Augustine, Luther, E.T.A. Hoffmann, and others. Music
is both mathesis and emotio, it contains both poles, the rational and
the irrational. In music history many very different solutions have
been worked out to stand the tension between the rational and the
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irrational poles of music. And also today we see quite different
possibilities of handling this tension (see Figure 9). One possibility,
we can be sure, is the path Horatiu Radulescu followed in his
quartet, a work which is a kind of stumbling-block for those who
try to evade the “rational/irrational” tension always inherent in
music.

Notes on Examples

Ex. 1 - 4: from HR’s score of his string quartet op. 33, Copyright Lucero Print
Versailles, London, Stuttgart 1987; the two diagrams inserted are from
analytical texts and material by the composer

Ex. 6: originally the famous idealized miniature showing Guillaume Dufay
with a portativ and Gilles Binchois with a harp; Martin le Franc: Champion
des Dames, Paris Bibl. Nationale Ms. ffr. 12476; coloured reproduction in Die
Musik des 15. und 16. Jahrhunderts, ed. Ludwig Finscher, Laaber 1989, part 1,
p. 78

Ex. 7a: from Allen Atlas” article

Ex. 7b: from the text and notes to Guillaume Dufay. Complete Secular Music,
The Medieval Ensemble of London, 6 LPs, Edition de L'Oiseau-Lyre D 237 D6

Ex. 8: after Allen Atlas” article

Ex. 9: - Beginning of Nr. IV from Formulas for String Quartet by Tom
Johnson: canonic imitation with audible groupings according the sequence of
Fibonacci numbers; [by permission of Tom Johnson] - -

Santa Maria del Fiore del Fiore, Florence, finished 1434 with proportions
following the Fibonacci series [from musica 39 (1985), pp. 129,130] -

Karlheinz Stockhausen: Adieu (1966) for wind quartet. Fibonacci durations of
cells and Fibonacci proportions [ from Kramer, The Time of Music, p.316] -

Mario Merz: Igloo Fibonacci, 1970

* Editors note - The signs i # and # (meaning one, two and three
quarter-tones raised) replace the terms monesis, diesis and triesis in the
original manuscript, nice extensions of the common Latin diesis for “sharp”.
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Tuesday 16:00
Daniel Wolf
Why Ratios are a Good/Bad Model of Intonation

This is a talk that is in transition. What had started as rather a
straight-forward talk has become something more like a rhizome.
Its going to go in many different directions so I'll be skipping a
little from A to J to B to Z. Please excuse me. I'm going to do that.
I hope this caveat covers me.

The reason I'll be skipping about so is that a lot of the input from
yesterday’s presentations and today’s presentations has caused me
to rethink what I have to say - because a lot of what I would have
said has been altered by what has been said before; and other
issues have been opened up.

For example, I didn’t expect that much of our discussion would be
turning on what we used to call the nature/nurture debate, and I
hope we pursue this in a deeper way. And I'm going to make a
proposition in this regard that perhaps there is some facility in our
hearing organs that operates rationally, rather there is a set of
facilities, a set of ratios that could be in operation, but that the
ones that we are familiar with, that we accept as familiar in our
musics and the degree of tolerance that we accept in identifying
these certain ratios is largely culturally defined.

Thats sort of a cheap way out, and there’s more to it - Clarence
Barlow and James Tenney have certainly fleshed out the
psychoacoustics better than [ am able. In the context of this talk,
though, I hope this is sufficient, although I will point out later that
this interval of tolerance tends to pop up in very similar ranges
(interval sizes) throughout the world.

The “ratio” I am describing here is principally intonational, which
has been my principal concern both as a composer and as someone
who does avocational ethnomusicology on Saturday mornings (if
principally as an excuse to eat Indonesian food), but I assume that
this notion of ratio - and degree of tolerance - is also applicable to
other musical domains (rhythm, form, etc).
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Does rational intonation exist? My flat answer is no: at some time,
at some point youre going to have beats. Something’s bound to go
wrong, at least as far as our lifetimes are concerned. I will play an
example later on my little synthesizer where, objectively, you will
recognize beats perhaps every 92-93 years. Its quite an accurate
synthesizer. But when those beats come, theyre very much there,
and you never quite know when they’ll appear.

So the beats will happen along whether its because of faltering
house-current or an oscillator reaching the point in the cycle where
the approximation - and a very good one, at that - finally rings
untrue.

The strings of string instruments ring untrue. Our breath will be
uneven or just run out. Temperature and humidity affect the bars
of idiophones. Something like that gives out. Thats part of our
human access to music.

Do we ever approach a rational intonation? This is perhaps a more
interesting, more relevant question. In my experience it happens
only at moments in musical performance, for me mostly in
moments of vocal music, but then I know of one, perhaps two early
music singers who are very conscious of this fact and talk about
intonation in terms of numbers. And in my experience, I know of
no barbershop quartets that speak in terms of ratios. And in my
experience, I haven’t heard vocal intonation better than that
achieved by American barbershop quartets, if I may be allowed a
prejudice like that.

Even someone like LLa Monte Young, who has had access to a
tremendous amount of resources - very good equipment, some
money, and lots of time - in the end, even though he has a fully
rational plan, accepts what sounds best subjectively to him on the
instrument at hand, although his measuring devices tell him that
he is missing a rational interval. In the end he chooses to tune by
taste rather than exact number.

The real instruments that you use in music conspire against you.
For example: stretched piano strings with their notoriously
stretched octaves, or solid pieces of metal. It varies from piece of
metal to piece of metal. For example, in the West Coast of the US,
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the habit is to build gamelan out of slabs of aluminum, rather than
cast bronze or iron as in Java (this is mainly because aluminum is
something you can cut through like butter with a good sabre saw,
and it doesn’t necessitate hiring a forge to do all your work. In
North America it’s also plentiful and cheap. That’s the practical end
of it.).

However, the upshot of it is that aluminum seems to prefer a
“more” just intonation. Its a metal that seems, when its in a nice
combination (a nice alloy), to be a little more sweetly disposed
towards the harmonic series. And Javanese bronze, let alone iron, is
a little more aggressive towards the harmonic series. So that the
materia musica is one thing to take into consideration in the
pursuit of music tuned on a rational plan.

More interesting, perhaps, would be to listen to various musics
(and I say musics in the plural; I will always do that if I can), to
find out if we can hear whether a relationship (or better, a
dynamic) exists between the sonic surface of the real musical
practice and some rational, possibly platonic ideal.

Are pitches representative of ratios? This is one question. I'll
rephrase it a little more poetically. Do works of music stand
sacramentally? That is, as an outward and physical sign of some
inward and spiritual grace (I remember the definition of sacrament
from my catechism). Or, do ratios have an interpretive role with
regard to pitch behaviour? Is the ratio on the input side of music
making or on the output side? Does the ratio exist in the
compositional mind or the perceptive mind?

We saw earlier today some graphs that are useful for dealing with
rational intervals. Following Jim Tenney, I will assume octave
equivalence, in spite of all evidence of non-linearity (and Clarence
Barlow’s impressive consonance formula).

Lets consider some familiar scales. I'm going to take a pentatonic
scale because there are only five notes. It'll be easier to deal with
since we haven’t much time. We heard yesterday a scale that went
something like [C-D-E-G-Al. Could someone suggest a tuning for
that scale?

C.Barlow: You mean something out of the ordinary?
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D.Wolf: Just something ordinary.
C.Barlow: There comes to mind Pythagorian thinking.

D.Wolf: Yes: L1, 8:9, 64:81, 2:3, 16:27. That’s one way of representing it
when its folded into a scale through reduction into an octave
modulus. Lets put it instead on the graph of perfect fifths, in the

order [C-G-D-A-El, which is tuned, again under octave equivalence,
as 1, 3, 32,33, 34

There are some interesting things happening here. The one | want
to point out is that between [C] and [E], or [E] and [C], there is an
interval that doesn’t quite close a circle. Its not the same as the
rest. But in some certain functional ways its the same. For
example, lets go melodically up the scale in groups of four tones
[CDEG], [GACD], [DEGAI, [ACDEI and [EGAC], whereby the exact interval
position of the final [C] is anomalous.

This is one of a group of scales having the property that the
Californian theorist, Erv Wilson, calls “Moments of Symmetry”,
wherein one has linear tuning of some sort where all the linear (or
generating) intervals - but one - are of a given average size, yet
all of the linear intervals have this scale-subtending quality.

Whats nice is that if you want to go from one moment of
symmetry, say from 5 tones to 7 tones, you have to add 2 tones and
you can add any 2, provided the interval between these 2 new
tones is of average size. Clarence demonstrated that you can take
any tone at random...

From the audience: [F].
D.Wolf: [FI. That’s no fun!

From the audience: [F#].

D.Wolf: [F3]. So we can have an [F%] and from this [F4] we make an
interval that would be an average in this group. So if we are
looking at a set of fifths we take another fifth, our average interval.

Let’s take [F2l. From this we get [C#] (we might even call it [Db] - it
doesn’t make much difference). We put it back into a scale, getting
[C-Db-D-E-F4-G-Al.
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C.Barlow: What do you mean by average, sorry?

D.Wolf: We've got these fifths and I'm taking another fifth that would
not, when added to the sum of these fifths affect the average. It
would be also possible to do this with a major third in place of one
fifth and a minor sixth in another place, so it ends up not affecting
the average.

C.Barlow: You add the interval sizes and take the mean?

D.Wolf: Yes. In cents, for instance. Back to the example: We can
reconstruct this new seven-tone scale as a series of - functional -
fifths, and our new series of “fifths” sets off as [C-F#], [F4-Dsl, [Db-Gl,
[G-D], [D-Al, [A-E] and [E-C].

These are all functioning here as melodic fifths, with seven-tone
group properties, which are important in a lot of musics. A
potential method of modulation from one type of material to
another is through identification of these scalar functions. I could
have used any other seven-tone scale and maintained these
seven-tone scale functions. I can go from one tuning to another
and no matter what intervals, I will maintain this scalar order
dimension, even though I may have fifths that are really irregular,
that are not 2:3 fifths. But the average, again less this gap at the
end, will remain a perfect fifth. Try it for yourself.

Another scalar possibility for this pentatonic scale uses ratios of 5:
[A-E-C-G-D]. We have an anomalous interval gap here between [Al
and [D], anomalous in size, but yet functioning by subtending the
same number of scale degrees. And if I look at this anomalous
interval, in this case between the extremes of [Al and [D], I can
close a cycle with the interval 27:40, analogous to the Pythagorean
pentatonic example | closed with [C] and [El in the ratio 81:128. If I
go on up to a seven-tone scale, for example a seven-tone
Pythagorean scale, the gap closes at the interval of 512:729.

From the audience: | don’t understand how that’s a cycle.
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D.Wolf: Because I'm bringing it back to the beginning in some way.
I'm mechanically folding it back. And this folding back with this
anomalous interval is one type of musical scalar syntax. The next
one, if we go to the seven-tone scale, folds back on the tritone. Its
whats left over. The interval of the tritone is something we
Westerners in Western music harmony classes treat very
carefully. Its the instrument of dynamism in the system because it
is eccentric in its size yet conserves functions of the normative
intervals. And the same thing happens at the next level: when we
listen to a twelve-tone scale, tuned in a Pythagorean sequence of
fifths, what happens between the two end points?

C.Barlow: A Pythagorian comma, isn’t it?

D.Wolf: Yes. We miss the octave of the first tone in the series by a
Pythagorean comma, and theres an interval, a fifth, that differs
from the normative fifths by the Pythagorian comma. This fifth
carries the lovely name of “wolf”.

What I find very useful is to think of all of these scales, regardless
of their intonation, in terms that distinguish between nominal
values and real values. It didn’t take me long to figure out that if |
heard “Happy Birthday To You” played on a piano attempting in its
tuning an equal temperament, and “Happy Birthday To You” played
on a metallophone attempting in its tuning a just intonation of some
sort, | would still recognise it as “Happy Birthday”. I mean there is
something very simply in common here, even though it is
something - like people struggling over the size of shrutis for a
thousand years - that is very difficult to pin down in terms of
numbers. So we give it a name instead of a number, names like for
instance [C D E F Gl etc., place holders.

In notational systems these place holders become very important.
In Western scale notation we've got a set of seven place holders,
and its an excellent way of managing whichever group of seven
tones is in play at one time. And its based on a group of seven
tones that are consecutive along the series of fifths. I think its
useful to think of the notation strictly as a management device. I
mean, ‘this is what I have available to me at this moment”. The
pedal mechanism of the concert harp is somewhat similar.
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With regard to intonation, these place holders describe a kind of
tolerance margin for intervals varying in size, mode of generation
etc.; the dynamic between rival generating schemes (the ratios)
and scalar order (the nominal series) is a central issue in music
theory and an essential pleasure in music.

To go beyond this requires some extra operation. If I'm in the key
of C, that extra operation may be the addition of accidentals, which
have their interpretation on a graph or lattice as some addition of
some new point to the graph. The notational equivalent is simply
that of an accidental change.

Let me take an example of moment of symmetry in a somewhat
obstreperous mode.

C.Barlow: Just one more question. Your choice of 5, 7 and 12 as
scales you folded over. Was that accidental?

D.Wolf: I hope to answer you more fully in a bit. For the moment I'll
say only that these are scales where it happens to work. There are
theories in this direction. The most famous belongs to Joseph
Yasser, whose “theory of evolving tonality” posited a continuously
developing musical vocabulary from a five-tone scale and a
seven-tone scale somehow co-habitating in a twelve-tone scale.
The next development he predicted would be a nineteen-tone scale,
which he advocated and for which he had an instrument built.

I'll come back if I can. I'm now going to take one fairly
obstreperous little scale, Javanese Pelog, with which I've spent a lot
of time working. Just thinking in terms of the contour, I'm saying
that a Pelog mode goes something like this: the first tone (call it [1]),
a flat second ([2]), a flat third ([3:1), a fifth ([5)), a flat sixth ([6h]) and
we’'ll add the octave ([8]) up at the top. I'm not telling you how big
that fifth is, but its something like a fifth. That’s the scale. Its basic
characteristic is that there are this relatively small second and
large third. This second degree of the scale moves up and down,
but it tends to be on the low side, at least in singing and rebab
playing. The interval between the second and third degrees tends
to be something like a major second, and those between the flat
third and the fifth and between the flat sixth and the octave are
something like major thirds.
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Now we could analyse this also as a series of fourths or fifths, as
[1-5-2b-65-35] and weTe back to [1l. Now you noticed in that sequence
there was a diminished fifth and the anomalous major sixth at the
end. If we knock out one of the anomalous intervals it averages
back to a series of fifths.

These fifths are musically very important and we can also
document that in Javanese theoretical practice, the only terms
they have had for intervals are words indicating octaves and the
intervals separated by one key and two keys, which on a pentatonic
instrument are fourths and fifths. They have names for these
intervals, and the elaboration techniques used on the instruments
are associated with these, so we can see existing Javanese
indigenous theory, independent of European influence, thinking
about these issues.

However, when someone says Pelog, the first thing that springs to
mind may not be a five-tone scale. The thought is of a seven-tone
scale. What they do is start something like a [48-5-6-1-2], so its a
fiftth (in this case a Pelog fifth) below. And then a fifth higher:
[5-6p—7p—3b. Now obviously something is going to give here, in that
we want a small interval, a [2] in the higher octave, and the
Javanese let something give.

In the mode that begins on [ll, you have a [2b] in this lower group of
three notes, a lower second. In the mode that begins on [3] in the
upper group, the upper interval [7-3#] is a bit wide, as is
sometimes this interval. It is quite flexible. It is akin to a European
well temperament in Baroque practice, in that when you go from
one patet (mode) to another you are not only changing your pitch
height and the relative melodic contour, youre also changing the
intervallic content. And at the end of an evening-length Wayang
(shadow puppet play), after spending time in each of the other
patets, when you come into the last patet, its like going into
heaven. Its quite different. Its really an extraordinary experience,
just because of the intervals’ size, the interval content, has
changed. But we have maintained the linear organization, the
structural content, the nominal content.
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There are interesting gaps in the cycle. Some theorists have
suggested there is a nine-tone scale behind all of this. You could
reasonably well approximate Pelog with seven tones selected out of
a nine-tone equal scale. This suggests that the Javanese have come
up with another family of moment of symmetry scales. One that
begins with 5 going on to 9, and then others like perhaps 16, 23,
something like that. It's another family of scales.

I've thus far avoiding pinning ratios on the intervals of this Pelog
family, a family which maintains - if my demonstration was
sufficent - certain functional characteristics of the linear fifths
seen in Pythagorean and just pentatonic scales. However, the
melodic sequence, the scale of Pelog, would seem to demand
intervals substantially different from 2:3 perfect fifths.

[ became very interested in the Pelog family when something
surprising started showing up in the intervals. | knew already that
the Pelog fifth wasn’t reiterating 2:3s, so if I wanted a just interval,
I'd have to look somewhere else - between degrees [l and [3], [4]
and [6], [5] and [7]. And between [2] and this hypothetical new pitch.
And between [6] and this hypothetical new pitch and [ll. This
interval started averaging out to be something like 6:7. And if you
stack a series of 6:7s, you will make a nice moment of symmetry, a
nine-tone scale but you'e fifth is not going to be 2:3.

A way of locating families of scales is to line them up as equal
temperaments, starting with the twelve-tone scale, with a fourth
of 500 cents and a fifth of 700 cents - see Ex.l What if we had a
synthesizer programme where our fifths were gradually squashed?
We're playing along some kind of music and my fifth sails down to
685 cents (seven-tone equal temperament). Some pitches start to
collide. We lose five chromatic tones, which curiously reappear
when we go down to 667 cents (nine-tone equal temperament),
sometimes sharing a position. I like the crossing of [F#] and [Es] on
the nine-tone axis (marked with an arrow). And continuing on out
to thirteen tones ([G] at 646 cents), both [G#] and [Afl co-exist.

I'm suggesting this as another technique of modulation. With my
imaginary synthesizer I am playing a Mozart sonata and my fifths
change gradually, and I end up playing my Mozart sonata in a
seven-tone Pelog. Or, I can take one of my favourite Javanese
pieces and modulate back to Vienna.
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Ex.1 - Transitional “fifth squashing”
by lining up equal temperaments

Temperaments:

5 12 7 9 13

B/C

E/F

(C#)

I'm more or less convinced that
if  Western music has a
temperament, then Javanese
music has a temperament too
(and perhaps two - but my
thinking about Slendro tunings
is increasingly unclear). And the
degree of tolerance accepted in
these two musics - | promised |
wouldn’t pursue the issue of
tolerance much more than this -
is quite similar. Just take a look
at the two pitches marked here
with arrows: the major third in
the twelve-tone system and
something that would be a Pelog
major third (when approximated
by a nine-tone equal scale) are
both about 400 cents, which
suggests they are tolerating a
major third very close to the
major third heard on the piano. |
hope this modulation exercise
suggests that interconnections
between ratio and function are
dynamic, not fixed, and that a
margin of tolerance allows
alternative tonal systems that
emphasize alternative intonation
characteristics without wholly
sacrificing ~ functions  more
immediately associated with
particular intonations.
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Ex.2 - Chorale No.52 from the Johannes-Passion by J. S. Bach
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Trost in meiner Not, wie du, Herr Christ, so mil----de, dich hast geblut’'t zu Tod.

One more issue. Ex.2 shows a Bach chorale you might be familiar
with, No.52 from the Johannes-Passion. Let me call attention to
something that bears on Volker Abels talk this morning on the
Mutabor II system of computerized intonation. I tried making a
musical example for this afternoon by putting this choral into a just
intonation, but I ran into a problem. The problem basically is, that
if I start calculating my ratios in one direction, starting at one end
and tuning up the intervals harmonically and melodically one after
the other, something would have to give in the middle! One thing
that’s important structurally (as I imagined hearing the piece and
as my none-too-latent Pythagoreanism would have me hearing it)
was the ascending series of fifths [Eh-Br-F-C-G-Dl. It's something
that I think would be important in the music and something I
would like to bring out in performance. Unfortunately I need some
of those notes to serve in other functions. For example | want the
[C] to be a minor third under my original [Esl. I've got a problem in
this example coming and going. And I finally decided I wasn’t going
to try to tune this up for you (I couldn’t tune it without giving up
something important) but rather suggest that these rational
graphing techniques are a way of getting at, of locating problems
in the music, analysing the music for particular ambiguities.
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[ have to make some distance right now between the analytic use
of graphs that I propose here and the graphs of Professor Vogel in
Bonn, whose project includes publishing editions of classical works
with a just intonation notation so that they can all be played once
and for all in a definitive, disambiguated intonation. | defy anyone to
make a convincing just intonation of this chorale. This music is
simply not just intonation music. Mr Bach is playing a pun on us.
He is allowing pitches to have one meaning coming and another
meaning going. One thing | noticed while considering European
musical history - I am after all an American ethnomusicologist
doing my field work in the exotic continent of North West Asia (I'm
sorry if youre taken aback by that, but in the United States we
learned that [Eur-]Asia is one continent, not two) — is that there
was a period of music with a highly developed musical rhetoric.
One of the characteristics of this rhetoric was the use of fixed
pitch instruments as a ground for the musical performance. A way
of closing, reining things in, controlling tonal and rhythmic
progression. And a lot of tricks, a lot of the musical rhetoric we
miss are contained in these kinds of intonational puns.

[ first had this notion while listening to a piano performance by
Glenn Gould where I had the illusion, in a recording of Mozart, that
the pitches were moving up and down. He was doing something
with his articulation, such that even though this ton and a half of
steel was not physically moving in any way (the pins were
standing still, the wires were not objectively changing pitch), he
was doing something in his articulation of the music, something
that created this illusion. Perhaps playing a little lightly on the
thirds of a major triad, a little more strongly on the third of a
minor triad. I don’t know exactly what, but he was doing something
in his articulation to bring out this aspect of the music. And my
corollary to this is that I think the XIXth century, the century of
the equal tempered piano (which is the century of music that I paid
the least attention to in my school days), may (ironically) be a
treasure-trove (simply on the basis of a body of orchestral music
without keyboard accompaniment - contrasting with the keyboard
driven music of the XVIIIth century) of exotic modulations into
rational intonation territories we haven’t encountered elsewhere.

Wolf: Why Ratios are a Good/Bad Model of Intonation 3



My time is short, so very quickly, a couple of pretty pictures.
Modulation is, I believe, the most interesting territory for the use
of ratios in new musics. First consider Ex.3, a graph by Erv Wilson
labelled the [-3-5-7-9-11 Diamond. If you are familiar with the
works and writings of Harry Parch, this is a notation of his
diamond. It's a notation using a wonderful graphing technique
developed by Wilson that allows him to graph more than two or
three dimensions. Note that a lot of the connecting lines that could
be placed on this graph have been omitted for clarity. What [ want
to convey from this drawing, if possible, is that you've got a very
centred system. Absolutely clear where the tonality of Parch is: !/1.

Ex.3 - The 1-3-5-7-9-11 Diamond by E.Wilson (after his original drawing)
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Now heres another system, the FEikosany (Ex.4)%4 where we have
the same numerical factors 13 57 9 11, but instead of putting them
in ratios comparing factors as numerators and denominators and
all related to some tonic (as Partch’s diamond did), Wilson has just
taken groups of three factors out of this set of six possible factors.

From the audience: I don’t understand it. Its a ten-pointed star.
Wheres the 13 57 9 11?7

D.Wolf: Okay, these are factors. One pitch class has the factors 1 3
and 11, another the factors 3 5 and 11, so theres a major third
relationship between these two pitches. If we go from 3x5x1l to
1x5x11, there’s another perfect fifth relationship.

Ex.4 - The 1-3-5-7-9-11 Eikosany by E. Wilson (after his original drawing)
351

179
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You can calculate this for yourselves and you end up in very
interesting territory. I'll play one small example of my own music.
This is a birthday present to Lou Harrison. This is just a little
random-walking music programme that is simply a series of
phrases alternating between the set of ten pitches with an Il as a
factor and the set of ten pitches that doesn’t have an 11 as a factor.

Now, you will not hear ratios of 11 in the phrase of the piece where
the harmony is very simple; but at the junctures you will hear
some ratio of 11. Whether its 12:11, 10:11, 18:11, something like that will
appear, just an alternation. ... This tape isn’t working. We'll hear it
later. One technique of modulation.

I'm going to close with some suggestions about horizons in
intervals, and interval perception and usage, in that much of the
dialogue that weve had in the past two days indicates that there
are limits to the rational intervals that we can use and perceive.
And I suggest we have yet to really discuss what those limits are.

A good example to my ears of an expansion of... well, I'll give you
two examples: One is the use of sound sculptures and installations
where the temporal domain is substantially extended. I've always
thought that this was the ultimate extension of serial techniques in
that, if these equate all of the forms - permutations, modulations,
possibilities - of a given row, theres no particularly temporally
privileged beginning or end, and so any end or beginning that you
set is arbitrary. Thus some sort of sound environment where the
audience can enter or leave at any time is naturally appropriate.

I'm going to play a very short excerpt from an installation of mine
with very accurately tuned pitches here on my synthesizer. This
is a gallery piece. It is with some seventeen pitches that are played
simultaneously.

(Sound example; J.Tenney and D. Wolf continue talking over it)
J. Tenney: What are those frequencies?

D.Wolf: These are frequencies above a fundamental of 6.25 Hertz. If
you turn your head youre getting a very different sound.

J.Tenney: How have you got the amplitudes?
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D.Wolf: The amplitudes are inverse to frequency. What I've done is
jammed seventeen pitches into a space smaller than a perfect
fourth, intending this as an object that could be perceived. The
numbers are all primes or octave multiples of primes, except for
the outer barrier intervals, which are in the ratio of 7:8. And then it
goes on to another chord.

I've installed it in a gallery. Theres a pause like the white space on
the wall between the paintings. Then we move to the next chord.
Its the same sort of structure using 6:7 as a barrier interval. This
room is a little big for this particular one.

I'll leave it on, and suggest that the other possibility for a frontier
in rational interval perception was one suggested to me by the
work of Maryanne Amacher, who has given concerts of what she
calls “Post Cochlear Music”, based on the thesis that we do too
much of our listening with our cochleas, and that it’s about time to
do something else, ie. direct contact with the interpretive organ.
This is as yet a little frightening for me. I'll leave it at that.
Thanks.

1 Editor’s Note -
An attempt to rationally tune this or any other chorale of Bach’s time
may reasonably rest on the following two premises:
a) Perfect intervals between notes of individual or consecutive chords,
ie. unisons and repeats, octaves, fifths (and their inversions, fourths),
are held at values based on the maximally 3-limit [1:1], [1:2] and [2:3].
b) Thirds (major and minor and their inversions) within each chord are
held at values based on the 5-limit [4:5].
By so proceeding, it was found this chorale is indeed rationally tunable,
but that the pitch level drops three syntonic commas in the process: at
the words mir in dem Bilde, at in meiner Not and at geblut’t zu Tod. The
initial 1/1 [Eb] in the top voice winds up disquietingly at 512000/531441
(65 cents lower) at the end, due to the harmonic sequence [I (vi) II VI
which occurs at the places mentioned. Indeed, even the simple melodic
form [1-3-6-2-5-1] (here [Er-G-C-F-Br-Er]) in using the interval set
[2:3:4:5] cannot but assume the tuning [V/1-5/4-5/3-10/9-40/27_80/g],
thereby dropping a syntonic comma. Thus a third reasonable premise -
c) The pitch level must be maintained - can and probably will conflict
with the other two.

2 (about the term Eikosany)
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Tuesday 17:00
Keith Howard
Mode as a scholarly construct in Korean music
Introduction

The study of Korean music developed with a series of treatises and
score books that detailed court and literati traditions. Prescriptions
for court music survive from the early 15th century onwards, a
time when a new Korean dynasty, Choson (1392-1910), was seeking
to stamp its codes and practices with Confucian legitimacy. The
ritual music tradition, dating back to the Dasheng Institute in 12th
century Song China, was restored on the basis of Chinese music
theory. Modal codes reflect an interpretation of this theory,
arguably unattractive in that only two melodies survive today, one
in five transpositions, from the repertory of 456 restored melodies
transcribed in the 1430 Aakpo (Notations of Ritual Music).!

The story of Korea’s ritual music, aak (Jap: gagaku, Ch: yayue) is
the focus of the first part of my paper. I then consider a single
instrument, the taegim (horizontal bamboo flute), where aesthetic
concerns are laid down in addition to seven modes in the 1493
Akhak kwebom (Guide to the Study of Music). The modes and
aesthetics have not survived. Is Akhak kwebom theoretical in
approach, appealing to scholars and the ruling elite, but of little
relevance to Korean musicians? Finally I move to local folk
traditions and argue that mode has little place. Rather, melodic
contours and model phrases appear to be the building blocks.

Three diverse and isolated examples make it foolish to suggest any
global conclusion. Many gaps show in our historical knowledge of
ritual music; data is missing, much of it simply unavailable in
today’s Korea. On the other hand, too little research has been done
to identify model melodic contours or phrase patterns, if indeed
these exist, in local traditions. Partly this reflects the approach of
Korean musicology, attempting to be “scientific” through the use of
statistics and comparison. Partly it indicates that Confucian
scholars wrote little about oral folk traditions. Nonetheless, I hope
to demonstrate that in Korea, since they are abstractions made by
and for scholars, modes have little relevance to musicians.
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Korean Ritual Music: the beginning of the canon

Korean ritual music (aak) stems from a curious moment in
Chinese music history when the eighth Song emperor, Huizong, in
1105 supported the founding of the Dasheng Institute. This was an
attempt to restore authenticity to ritual music masterminded by
the Taoist Wei Hanjin. Several peculiar features mark the institute
and underline why this was an extraordinary, now totally sidelined
episode in Chinese music history, even though the revised rituals
were adopted by the Jin and Yuan courts. Nonetheless, Korean aak
is today still identifiable with the Dasheng restorations.

The most peculiar feature first:

The institute set about constructing a pitch pipe for the
fundamental pitch from which all others would be derived.
The correct traditional procedure, attested in ancient sources,
is to line up grains of a particular kind of millet, 90 grains
constituting the length of the pitch pipe. Obviously, the length
of the pipe and the pitch obtained are functions of the quality
of the grain crop. The Ta-sheng (Dasheng) Institute proposed
instead that part of one of the emperor’s fingers be used as
the unit measure. The emperor agreed to this, and the
measurement was taken and used (Provine 1988: 133).

A new pitch system was nothing new. Pian points out 35 pitch
reforms from the late Zhou to the Ching (1967: 154). Picken
provides a brief (and early) survey beginning with the Liishi
chunqiu text from 239 BC:

He [Music Ruler] gathered bamboos in a valley on a mountain
pass, taking those grown of uniform bore and thickness, and
cut between two nodes; the length of the piece being three
inches and nine tenths, he blew it, making this the Yellow Bell
[the fundamental pitchl.

Yellow Bell is huangzhong in Chinese, hwangjong in Korean, the
essential pitch pipe. From this, other (Chinese) pitches were
determined:

To the three parts of the generator add one part, making the
superior generation. From the three parts of the generator
reject one part, making the lower generation (Picken 1957: 94).
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The male “superior generation” were in the ratio 3:2 to previous
pipes, while the female “inferior generation” were in the ratio 3:4,
giving a chain of ascending fifths and descending fourths. Picken
adds that this should not be considered a chromatic scale, but “an
array of all the notes in the Chinese musical firmament” (1957: 95)
(see Figure 1. We need only consider the seven initial tones
generated, which give a fa mode. Estimates of the pitch of Yellow
Bell vary, given a tube length of 20cm, by as much as a minor
third, from F to D? From this principle, 84 heptatonic modes were
prescribed by Tang times (618-907), seven basic modes simply
starting on each of the seven fa mode pitches generated through
the same ascending-descending chain, and transpositions for each
of the 12 semitones. However, decline set in, leading to the
abandonment of all but the basic fa mode.

Fig. 1 At the Dasheng Institute, modes
were again changed, giving the

entatonic ' - -
P \ second peculiar feature: ritual

lmks| C DWENFE GE Al -

RNANAVA A music, Dasheng yayue, now
/3/2JF G ASBC# D¢ respected a distinction of key
N\ 3/4 heptatc;nic\:‘\ based on two tone sets -

zhengsheng (Kor: chongsdong),
zhongsheng (Kor: chungsdong).

All musical instruments and vocal melodies were defined within
this, and the scheme to be followed varied dependent on the
season. Sacrificial rites relating to the cosmic forces of yin (Kor:
iim) and yang identified yin (the female) with the zhongsheng set
and yang (the male) with the zhengsheng (Song 1985: 8-9; 1992: 172).
Again, this is not so strange as it may sound. The Liishi chungqiu
had also equated the orderly generation of sounds with other
aspects of order: directions, substances, and seasons.

The third peculiar feature concerns the long zither gin (Kor: kim).
This had traditionally been constructed with seven strings, but the
Institute built one- three- five- seven- and nine-string versions.
Note that such unusual gin are not mentioned in standard accounts
of the zither (e.g. Van Gulik 1969; Liang 1972; Lieberman 1977); the
Chinese musicologist Yang Yinliu does group them together in his
consideration of the Institute.
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The demise of the Institute came in 1125, and two years later the
Song capital fell to the Jin. But by then Dasheng yayue had been
imported to Korea. Koryosa (History of the Koryd Dynasty; 1452)
records that it arrived from Huizong in 1116 as a massive gift of
428 instruments together with costumes and ritual dance objects.
This followed the 1114 gift of Dasheng xinyue, music for banquets,
comprising 167 instruments, scores, and illustrated instructions for
performance (Koryosa 13.33b and 70.28a-29b). In 1116, the
instruments were to be divided into a terrace ensemble
(tingga-um/ yin [femalel) and a courtyard ensemble (honga-yang
[ malel), with a total orchestra smaller than it would have been in
China: the emperor required greater forces than appropriate in a
suzerain state. The first performance took place in October in
front of King Yejong (r. 1105-1122) at the Kondokchon Royal
Audience Hall.

The gift has often been regarded as an unsuccessful political bribe
and, indeed, from a Chinese viewpoint, this makes sense (Pratt 1976,
1977; Provine 1980, 1988). Huizong, threatened by Khitan and Jurchen
attacks, thought it worthwhile to strengthen cultural and religious
ties with Korea to dissuade the Korean king switching allegiance
to the increasingly powerful Aguda. As an ill-contrived scheme to
purchase loyalty, it clearly failed and, indeed, given the imminent
demise of Song, it is unsurprisingly not recorded in official Chinese
dynastic histories (Provine 1980: 19-20). Nonetheless, a Korean
perspective presents a different interpretation wherein, over time,
national political philosophy was increasingly articulated in terms
of Confucianism. Korean kings began observing Confucian rites to
heaven (Wongu), agriculture (Chokchon), land and grain (Sajik)
and royal ancestors (at the Chongmyo)(Korydsa kwon 59.1a/b). Such
rites were thought incomplete without suitable ritual music.
Hence, the first gift, of banquet music, was of limited use. So,
Minister Im Chon sent Korean envoys and musicians to China,
whom Song (1992) shows - citing Xu Jing’s comments in the Gaoli
tujing and the Song shi -, were commanded to try to learn
Dasheng yayue. Song translates a message from King Yejong,
recorded by Minister Pak Kyongjak (1055~ 1121) and preserved in
the 1478 compilation Tongmunson (Collection of FEastern
Literature), which makes it clear that Koryo actually requested the
first gift:
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Some time ago, Koryd sent a message with a special envoy to
request the new music. The Emperor has listened to Koryd's
desires and has been sympathetic to Koryd's sincerity. And,
unexpectedly, he has bestowed the new music (cited in Song
1992: 177).

Both gifts were requested and, indeed, Huizong sent a message
along with the second:

Since the Three Dynasties, ritual has been scattered and
music destroyed... A thousand years later we, reflecting upon
the pitches and tunes of the Former Kings, have arrived at
notes with such style and refinement as to fill the whole
country, making visitors feel settled and giving pleasure to
strangers. From far away in your country..you have asked
permission to send officials, and these are now at court... Now
we answer your request, and are sending (this gift) to your
country. Though our borders are different and our lands
separated, fundamentally there is great harmony (between
us). Is this not good? (Korydsa 70.5b cited in Pratt 1976: 209).

Koryosa tells us little about how Dasheng yayue fared in Korea.
By 1134 it was incorporated in additional sacrificial rites, and by
1188 indigenous Korean music, hyangak, had been added to some of
these same rites (Koryosa 14.17b and 16.28a, Yi Hyegu 1967: 149-
50). Later, in a 1361 attack, all Chinese instruments except two sets
of metal bells and stone chimes were lost, leading to successful
appeals to the Ming court in 1370 and 1406 to send a few more
instruments and help with instruction (Provine 1988: 10-11).

The Aakpo (Notations of Ritual Music) is appended as chapters
136-137 to the Sejong shillok (Annals of King Sejong) and describes
a thorough revision of the ritual music conducted in 1430 by four
government officials: Yu Sanul, Chéng Inji, Pak Yon, and Chdng
Yang. The revision is characteristic of an East Asian dynastic
beginning. Reflecting the policy of the new Choson rulers, it
adopted a neo-Confucian theoretical perspective, outlined in
Chong’s preface. Accepting that the authentic voice of the past had
been irretrievably lost, the compilers began with an examination
of two Chinese texts, Lin Yus Dasheng yuepu (Collection of
Dasheng Music; 1349) and Zhu Xis [Ili jingjuan tongjie (Complete
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Explanation of the Classic of Etiquette; early 13th century). The
first of these, although ostensibly recording rituals current in 1316,
seems to derive largely from the 12th century Dasheng Institute
(Provine 1988: chapter 5). It is now forgotten in China. The compilers,
incidentally, also knew Chen Yang’s 12th century Yueshu.

In the Korean Aakpo revision, new pitch pipes were built from
brass, but these were deemed too long and held too many grains of
millet. The pitches diverged from those on the Chinese bell and
chime sets which survived in Korea, so the ancient theoretical
measurements were discarded. Stone from a quarry at Namyang
was used to construct new chime sets. The many versions of the
qin are mentioned, but these too were soon discarded, for the first
chapter of Akhak kwebom (Guide to the Study of Music; 1493)
describes only the 7-string instrument, although it refers back to
the Dasheng yuepu.®

The Aakpo returns to earlier modal theory, particularly the 1187
Liili xinshu (New Treatise on the System of Pitches) by Cai
Yuanding,' in which only the first five pitches generated by the
ascending-descending sequence are considered proper cadence
tones. The five form an anhemitonic pentatonic scale with
philosophical overtones (Table 1:

Table 1- Scale degrees and their connotations

pitch character Korean Chinese material Association
name name (5 elements) (for correct govt)

(pentatonic)

fa =) kung gong  earth ruler

sol & sang shang  metal ministers

la A kak que wood people

do # chi zhi fire affairs

re Pl u yu water objects

(heptatonic)

si Q : pyonch’i  bianzhi

g
L

mi pyongung biangong
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There were 12 Zhu Xi melodies to consider. The Aakpo compilers
discarded six because these were not in a fa mode and therefore
did not cadence on fa. An interpretation was offered of the
Confucian Book of Rites, whereby no tone should assume greater
importance than the rulers fa. Disorder was deemed to occur in
the six discarded melodies because they cadenced on sol, the
ministers” tone. The six surviving melodies each had a number of
verses, each of which started and concluded on fa. With the
exception of the fourth, each verse was taken as a complete piece,
to give 26 melodies in total: 1 (3 verses) 2 (5), 3 (5), 4 (4), 5 (4), 6
(5).°> By the same argument, although Lin Yu recorded 16 songs,
three were in improper modes and were discarded. One other,
though in a fa mode, had inappropriate notes to the pentatonic
system. So, only 12 were retained. Here is the justification:

Music theorists are very concerned about having ‘ministers’
and ‘people’ usurp the ‘rulers’.. In the functioning of a
government, successes and failures are all related to (the five
tone) classification. When the Chou Ii (Zhou Ii) (Rites of the
Chou [Zhou] Dynasty) says, “The Grand Master grasps the
yin and yang pitch pipes in order to listen to military sounds
and predict whether things will go well or badly”; or when the
“Essay on Music” (in the Book of Rites) says, “When the five
classifications are not disordered, there are no ominous
sounds”, they both refer to this. If a note were placed between
fa and sol, it would be...a perverse note. The same holds true
between sol and la, and between do and re. Above the fa note,
alien sounds are especially unwelcome (Chong Inji, translated in
Provine 1988: 168-9).

To this point, then, there were 38 melodies. Next, two mechanical
adjustments were made. One utilized a literal but not necessarily
correct interpretation of Zhu Xi to reduce the range of songs to a
major seventh, lowering tones outside this range by an octave. The
second transposed all melodies to give fa as Yellow Bell,
hwangjong to Koreans. Each melody was then transposed to begin
on each of the 12 possible semitone pitches, i.e., 26x12=312 for Zhu
Xi and 12x12=144 for Lin Yu, totalling 456 melodies. This created an
additional problem, and further downward octave transpositions,
because the sixteen tones available on the metal bell and stone
chime sets prescribed a total range of a minor tenth (Figure 2).
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Fig. 2 - Pydnjong (16 bronze bells) and Pyon’gyang (16 stone chimes) -
[lustrations from 1493 Akhak kwebom
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The justification is curious. Having stated concern that ministers
and people usurp the ruler, the Aakpo preface continues:

..they have continued to use the (higher octave) pitches,
because this makes it possible to avoid instances when sol and
la surpass (i.e., have a lower pitch than) fa... Chu Hsi (Zhu Xi)
says that using higher octave notes to begin pieces was not
the ancient method. However, he also says (elsewhere),
“There are 12 individual pitches, but only seven are used at a
time; if an additional pitch is inserted, then it is perverse”
(translated in Provine 1988: 168-170).
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The whole process drastically changed some melodic shapes, as
Figure 3 shows, giving hwangjong as C, a pitch which it retains in
contemporary ritual use.®

Fig. 3 - Transpositions of a single Lin Yu melody
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Only one ritual survives in Korea, still using any of these
melodies:the twice annual Sokchon Rite to Confucius, performed
in the Confucian shrine compound (Munmyo) at Songgyungwan
University in Seoul. The antiphonal orchestral division is retained,
but only two basic melodies have survived from the 15th century.
Each melody strictly adheres to Lin Yus uniform structure of
eight equal phrases each of four regular notes, accompanied on pu
(baked clay pot with split bamboo beater), formulaic patterns at
the end of each phrase on chingo (“advancing” large barrel drum)
and nodo (double barrel drum struck by rotating leather thongs).
Set percussive signals for opening and closing pieces distinguish
between terrace and courtyard orchestras, using puk (clappers),
chuk (wooden trough), & (scraped wooden tiger), and drums.
Melodic instruments play in unison, though a Korean innovation
appears to be a slow upward glissando on wind instruments at the
end of each note. Until the 1970s string instruments and voices
were silent but have now been restored (Provine 1987: 7-10).” Figure 4
gives the initial melody; the text, for ushering in the spirits, runs:

Tae chae son song, to tok chon sling,
Yu chi wang hwa, sa min shi chang,
Chon sa yu sang, chong sun pyong nyung,
Shin ki nae kyc‘)i, 0 S0 song yong.
“Confucian education has been kept due to the benevolent teacher,
This rite is always honourable, clean and pure,
Spirits! Come and receive this offerin%,
How radiant your holy faces are!”
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Fig.4 - Hwangjonggung (Ushering in the spirits) from Munmyo Cheryeak
(Rite to Confucius). Source: Provine 1988:162
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The first piece’s five transpositions (with fa as C, E, F, G# and A)
are repeated in the rite’s six initial sections. The second piece, its
name prefixed by songshin, occurs once, at the ritual’s end, when it
cadences on C. Both are from Lin Yu's Dasheng yuepu.® Each ritual
section names the same music differently - ungan chiak, mydngan
chiak, songan chiak, soan chiak, songan chiak, oan chiak, Gngan
chiak. Transpositions are marked for initial and final notes, by the
Chinese [iilii (Kor: yullyd) system: hwangjonggung (C), kosongung
(E), chungnyogung (F), ich’ik (G#), namnyogung (A) (kung/-gung=
central tone). This entire music now forms a 90 minute sequence.
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Instrumental Aesthetics

The taegim (tae = large; kim /-giam = blowing instrument; H/S
421.121.12) is a large transverse flute normally made from a length
of yellow bamboo (hwang chuk) with prominent nodes.® Typically,
ducts run along either side of the tube between nodes. The upper
end of the instrument is sealed with wax (mil) at the first node; the
other end is left open. The 1493 treatise Akhak kwebom describes a
standard form said to comprise five years” growth of bamboo:

— The length should have five nodes and four central sections,
since top and bottom are cut between nodes.

- An extremely large blowing hole (ch'wi kong) - the size
reflects the requirement for considerable vibrato - is cut
below the first node in the first section.

— An oval hole (ch’ong kong), covered with a tissue- like reed or
bamboo membrane which acts as a mirliton when a protective
metal plate is slid away, is cut into the second.

- Six equidistant finger holes (chi kong) are cut, three assigned
to each of the remaining two central sections.

- Five additional small holes (ch’ilsong kong) define the
sounding length of the tube and provide decoration above and
below the bottom node. Ch’ilséng translates as the seven stars
of the Big Dipper constellation, but there is no evidence to
suggest there were ever seven holes (Figure 5).

Fig. 5 - Three instruments (all measurements in centimetres)
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In practice, there appears to be no standard form. The six finger
holes are initially cut small, typically to the template of an existing
instrument. Pitches produced at each hole are then sharpened or
flattened by enlargement towards or away from the blowhole.
Clearly, this implies the holes are not equidistant. Between two and
five small holes are cut: five is generally considered unnecessary.
And, although Akhak kwebom gives the length as 86.5cm, today’s
instruments tend to be shorter. Two examples, both producing the
standard range, differ in length by 3.2cm, with lem difference in
the distance between first and second finger holes (i.e., 3.5cm and
4.5cm) (Figure 5). The physicist Pak Hiingsu has measured
hwangjong, Yellow Bell, on two old instruments and as played on
contemporary instruments by seven musicians (Pak 1983, 1990). The
results run from 262.9-275.1cps, with the two old instruments
registering near the median at 270.6¢cps and 271.7cps respectively.
Not all fingering possibilities yield such consistent results: Table 2
gives the results for four musicians, divided to reflect how closely
they match just one old instrument. For approximate western
tunings, fingering 1 produces Bb, 2 C, 3 Dr, 4 Eb, 5 F, 9 G and 10-12
tones around Ab to A. In earlier articles (eg, Pak 1980: 389-396),
similar results were said to show there has been no significant
pitch alteration since the 15th century, despite the fact that the
instrument has been shortened (see Chang 1984: 224).°

Table 2 - Comparison (in Hertz) of frequencies played by four musicians

fingering instruments:.. average; instruments:..average.
A B C D E

1 eeee®ee 233 .3 230.6 240.7 234.9 239.0 237.7 238 .4
2 e @@ 080 276.9 265.2 276.9 273.0 276.8 282.1 279 .6
3 e @800 298.6 292.2 296.0 295.6 302.8 313.1 308.0
4 © @000 329.1 324.2 329.7 327.7 337 .6 342.5 340.1
5 e@0000 361.4 358.5 362.8 360.9 372.9 378.5 375.7
6 eoceeeee® 3383.5 363.6 392.0 376.4

7 €0 @000 391.7 378.9 398.5 389 .4 403 .5 403 .5
8 e€00O0Ce®0 410.9 389.2 401.0 400 .4

9 €00000 403.9 393.4 403.9 400 .4 413.2 412.8 413.0
l1Dceeeeo 432.9 405.0 439.0 425.6

11 cooceee® 457 4 437.1 449 .6 448 .0

12 000000 445.2 439.3 440.1 441.5 463 .4 444 .3 453 .9
130e0e@e@e@e 477 .0 459.7 476.7 471.1 491.6 483.3 487.5
14 o0 @000 484 .6 464.0 477.1 475.2 492 .5 492 .5
15000000 542 1 522.6 553.4 539 .4 554.9 571.9 563.0
16 ®o®®@®0e® 589 .3 558.4 592.9 580.2

A = Kim Songjin; B = Pak Chonggil; C = Cho Chaesdn; D = Han Yongun;
E = taegim kept as artefact 2431 at Korys University museum, Seoul.
Source: Pak Hangsu 1990: 171
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Performers vary as to which holes to cover for fine tuning pitches.
Indeed, the large blowing hole facilitates fine tuning so equidistant
finger holes might indeed be practical. At the Kungnip kugagwdon
(Korean Traditional Performing Arts Centre® 1 was taught a
simplified fingering system of a range of two and a half octaves
(Figure 6). Performers now distinguish three pitch registers, based
on octave overblowing: yatdn tan (low), chunggan tan (medium) and
nopin tan (high). Registers are allied to specific tone colours: clear
and highly vibrated cho ch'wi (soft blowing), elegant and strident
pyong ch'wi (medium) and triumphant yok ch'wi (hard), reflecting
the mirliton’s buzzing characteristics. Pitches are now described in
the Iiilii/yullyd system; simple verbal notations (kuiim) are usual,
varying slightly between performers, but heeding octave shifts.”
Modes follow standard court (pentatonic “major” pyongjo and ujo,
pentatonic “minor” kyemydnjo) or typical folksong patterns.

Fig. 6 - Simplified fingering system
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Back in the 15th century, Akhak kwebom prescribed basic modes
for the taegim. These were theoretical, and appear to descend
from the transposition system adopted in the 1430 Aakpo. But the
12 potential transpositions were restricted by the then used
fingering system on the instrument, in which the lowest octave
comprised pitches produced by systematically opening successive
holes. There were consequently seven modes, each heptatonic
rather than the more characteristically Korean pentatonic: il chi
(=one hole, ie., lowest pitch produced with bottom finger hole
uncovered), i chi (=two holes, ie., lowest pitch produced with
bottom two finger holes uncovered), and so on (Figure 7).
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Fig. 7 - Fingering charts for taesgim modes from Akhak kwebom
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As in the Aakpo, the lowest pitch was also the central tone.
Pitches were described in two ways, using dual characters from
the [iilii/ yullyo system and a Korean system known as oim yakpo
(“five tone simplified notation”), thought to have been invented
during King Sejo’s reign (1455-1468). The latter merely denotes a
position above or below a central tone (kung), and consequently
does not designate pitch. Odm yakpo also adds the Sino-Korean
character kye (from kyemydnjo) to signify a shift by a semitone.
Kye tones replace standard tones in pieces regarded by Korean
scholars as being (or having once been) in a “minor” mode:

Table 3 - Liilii/ Yullyo and Odm yakpo Notation Systems

Akhak Pitch name characters name today
kwebom today (with translation)
C Ep hwangjong  # $# hwang (yellow [bell])
Db E taeryo X &
D F taeju K F& tae (big)
Ep Gb hyopchong % $& hyop (side or assist)
E G koson & W ko (husband’s mother)
F Ab chungnyo f &  chung (middle)
G A yubin % E
G Bp imjong 7 $8  im (forest)
Ab B ich'ik % Bl
A C namnyo M & nam (south)
B» Db muyok % 3  mu (nothing)
B D tingjong fE i3
ch’ong i ch’ong (water=8ve higher)
kung =) kung (central tone)
ha T ha (beneath)
kye F kye (semitone above)
sang £ sang (above)
il - il (one)
i - i (two)
sam = sam (three)
sa Py sa (four)
0 ¥l o (five)
yuk A yuk (six)

giving combinations such as
kyeha il # T — in kyemyonjo,one below &

ha sam T = three below &
kyesangil # k£ — in kyemyonjo,one above &
sang i £z two above &

N.B.- today’s term t'ak (octave lower) omitted; Korean pronunciations only
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Akhak kwebom is the major source for historical musicological
studies of music and musical instruments in Korea today. But, was
Akhak kwebom really used by musicians, and if not, what
relevance does it have to practical music making?

Local traditions: modes or melodic cells?

In Korea today, musicology remains more theoretical than
practical. Yet, before the advent of scholarship, local music was
never precisely defined. Scholars, who are still today trained
primarily in the study of court traditions, continue to define
abstract modal parameters. In effect, and ignoring problems
associated with the terms, this imposes the Great Tradition
(originally imported from China to the Korean court) over the
Little Tradition (which many Koreans in the 1990s would describe
as the culture of the masses - minjung munhwa).

To scholars, the old is considered most worthy, yet study of the
past is pretty nigh impossible in the oral traditions of rural Korea.
Hence, what I have argued elsewhere to be both an appeal to
“scientific methodology” and a Confucian respect for ones
predecessors (Howard, forthcoming), has led in Korean folksong study
first and foremost to the development and elaboration of a theory
of regional modes. This divides the Korean peninsula into five
regions: Sodo north of Seoul, Kyonggi around Seoul, Namdo in the
southwest, the east coast, and Cheju after the southern island of
the same name.

The regional modes are said to comprise, respectively but with the
exception of Cheju,” sushimga cho, kyongjo, namdo kyemydnjo, and
menari cho. Two of these terms actually incorporate the names of
characteristic folksongs: Sushimga from the north and Menari
from the east. Hahn Man-young (1991) draws a map and defines
regional styles. Vocal characteristics - nasal resonance in the
north, clear and lyrical singing in the centre and sad lamenting
(aewan ch’ong) in the southwest - are very relevant. But these are
subsumed beneath modal distinctions which give (ignoring
“occasional tones,” passing tones, and so forth) sushimga cho as re,
la, do, kyongjo as so, la, do, re, mi, namdo kyemydnjo as mi, la, si,
and menari cho as mi, la, do (Hahn 1991: ch.6).
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The imposed modal distinctions neither match stylistic features in
song texts nor respect context and use. Nonetheless, and surely
partly to ensure success, ornamentation and constituent pitches
have to be straightened out to fit the theory. An unfortunately
blunt reason for discounting apparent aural evidence has been
given by Kwon Osong: “because they were not professional (folk)
singers, they sang with undifferentiated ornamentation” (1983: 60).
Elsewhere, Hahn Man-young (1973: 141) explained that some tones
had to be removed or corrected because there was a wide margin
of acceptable pitching. Referring to Namdo songs from the
southwest, he states they “manifest distinctive functions of
microtonal shadings (non-vibrating tones with complex microtonal
shadings, widely vibrating tones)...” He defines the mode as mi, la,
and si, with an additional minor tone (mi) and a characteristic
descent from re to si, but in a further article published in 1974
concludes that “the tonal supply is mi, la, si-re, re, mi, mi-sol, and
la” (1974: 311. Related to this, Chang Sahun considers three basic
tones form the axis upon which “microtonal shading” occurs
over a minor third range (1976: 38-9).

Yi Pohyong (1971 and many later articles) and Paek Taeung (1982 and
more recent articles) have attempted to reduce this tonal
specification. Yi has replaced the court-inspired term for mode,
cho/-jo, with something more akin to a melodic style, tori Paek
prefers kil, a term denoting a road or path. Paek emphasizes two
features of Namdo songs, a kkdngnin mok “breaking tone” in
which a note is approached through a descending appoggiatura and
then typically resolves onto the tonic, and a ttonin mok “vibrating
tone” which approximates to a dominant below the tonic.

Yi reports:

In the tone system..the typical characteristics are: the
cadence tone is la, a perfect fourth lower than la is mi, and
above la is si. The characteristic is of differential variable
tones from the upper fourth over a minor third, and from re
to do (Yi1971: 80-81).

Nonetheless, both scholars still simplify their notations and both
try to keep the imposed set of pitches.
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Fig. 8 - A: The modes of Korean folk songs
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Figure 8 notates these differing modal specifications. The basic
tritonic set may well lie underneath many songs from the Namdo
region, but in itself it is insufficient explanation, for not only is
such a set never verbalized, but it also oversimplifies what can
clearly be heard.
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Two examples from Chindo, an island county off the southwest
corner of Korea,"” demonstrate:

1. For two months, I daily visited Cho Kongnye, a grandmother in
Inji village who since 1973 has been appointed a poyuja (holder)®™ of
Muhyong munhwajae (Intangible Cultural Asset) 51, Namdo
tillorae, to learn her songs. The set of planting, transplanting,
weeding, and harvesting songs were consistently sung with a
large pitch palette. Using a weighted scale analysis, based on
McAllester and Blacking (Blacking 1967: 183-187; McAllester 1954:
facing 46, 50, 54), the tritonic relationships quickly break down
(Figure 8). Yet behind complex ornamentation, which may vary
from stanza to stanza, there is a distinct melodic model. I was
never taught the model, and my attempts to sing just this basic
form were not tolerated by Cho. Further, experimentation with
more “legitimate” pitches from the Namdo kyemydnjo mode were
corrected whenever this meant discarding other pitches. It appears
then that a model, more than any concept of mode, defines the
songs. This is consistent with Yi's tori and Paek’s kil and is
underlined by a Seoul National University MA thesis written in
1984 by Yi Chongnan, where versions of one song from the set,
Sangsa sori, are compared in terms of modal similarities. Yi, like Yi
Pohyong and Paek, retains, a priorii the concept of mode,
considering melodic patterns only as a secondary feature. My
notation of Cho’s Sangsa sori is given in Figure 9 (see texts below).

(i) Refrain: This is the song of love sickness!

Verses: Here we plant, there we plant,
Plant the fields evenly, plant the rice carefully.

This song of love sickness! Where have you been, my lover?
Now is the right time for you to return.

If our human life is lost just once,
There is no way it can come back again.

This love sickness, whose love sickness is it?
[t must belong to Mr Kim, the owner of this field.

(ii) Refrain: This is the song of love sickness!

Verses: 1. We should finish our work quickly,
Then we can go to serve our country.
2. Little by little the mountain before us gets further away,
Just as little by little the mountain behind us gets closer.
3. We have finished planting this rice paddy and that rice paddy,
Now we must cross to that paddy over there.
4. All is finished, all is finished,;

My love sickness also comes to an end.
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Fig.9 - Two Sangsa sori with variations (“vIN” marks variations in repeats)
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2. Kim Kwibong lived in Songjong. He made his living as a ritual
accompanist (koin) to hereditary shamans (tangol); indeed, his
family had belonged to the shaman fraternity for many
generations. In the 1970s he had learnt the p’iri (oboe; H/S
422.111.2) from Pak Manjun and Kang Hansu, both of whom have
now died. In 1983 he agreed to teach me. I was given an
instrument made by Kang and arrived for my first lesson.

Kim played a seven-note phrase and told me to copy it. Which
fingering should I start with? I asked. He responded it didnt
matter, so long as | produced the correct pitch. What pitch should
be produced when three holes plus the thumb hole are covered? It
depends, came the reply. I asked him to repeat the phrase a few
times, but still [ had no clue how to play it. How about teaching
me a scale first? He kept playing phrases, never single notes, and
never anything akin to an ascending or descending scale.

Eventually I mastered this simple phrase, but I was immediately
thrown by a further shock: he played what he considered the
same, yet it was now distinctly different. I tried it, and was told
not to copy.

Several things emerge from this. First, Kim had little or no
concept of scale beyond melodic passages. Second, fingerings were
not associated with precise and constant pitches. Rather, the
melodic contour dictated approximate pitches and allowed these to
be obtained with a range of timbral shadings determined by the
player, his skill, and the mood he hoped to create. Third, the oboe
normally has seven finger holes and a thumb hole, but Kang made
some instruments with only four or five finger holes.

In most rituals, Kang and Kim both played with just one hand,
using the other hand to simultaneously give a rhythmic foundation
on the gong. This reflected that clients lacked sufficient money to
hire many musicians, but it also had the direct result of requiring
a fairly broad pitch range to be produced with a restricted number
of finger positions. This was made possible by breath adjustments
and through the use of an oversize reed, so Kang obtained a range
of an 1lth (D-g) with just his thumb and three fingers, Kim a 10th
(Er-g) (Figure 10)."
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Fig.10 - Fingering charts for the piriin Chindo shinawi
Kang Hansu: Chinyangjo Kim Kwibong: Kutkari

Thumb e e ° ° ° o e o o ° ° o
Isthole © e ° ° o o e o o ° o o
2nd o o ° o ° o e o o o ° o
3rd o e o o o o o e © o o o
(etc) o °

e (open except for fine tuning - o

below 4th hole)

Fourth, the melodic phrases were based on models. The oboe was
taught through these models, and was a vehicle for melodic
patterns considered to imitate the human voice. In this perception,
the development of fluency in playing ascending or descending
scalic passages had no place. Again, as in Sangsa sori, the model
itself was hardly ever performed. Musicians added ornamentation,
extension, and elaboration.

In one performance in the rhythmic cycle kutkori, I have identified
six phrases in a single performance by Kim (Howard 1988: 75-77).
In other parts of Korea, kutkori, played as an instrumental piece,
sounds quite different yet is based on similar models. Elsewhere I
have juxtaposed Kim’s performance with other versions played by
ritual accompanists in Seoul, notated for a literati ensemble known
as Chul pungnyu in the North Chdlla provincial town of Iri, and
sung as a processional along with percussion bands. I am not able
to identify precise archetypes for models, perhaps reflecting that
considerable time has passed since common melodies were played,
but nonetheless feel there is too much similarity to suggest
different roots.

To reiterate: mode has very little concept in the reality of what
musicians do. Modes may be there in books, and maybe can be
heard in a performance merely because a scholar said they should
be used. Musicians, moreover, are creative beings, and
prescriptions have a habit of being abandoned.
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Korean terms are romanised according to the McCune-Reischauer
system, Chinese terms according to pinyin.

Eg, F (Amiot), E (Mahillon, Courant), D (van Aalst).

Even this gin soon fell into disuse. Koreans lost the playing technique
and, although always placing alongside other zithers in the orchestra
for Confucian rites, restored it only after an article on tuning systems by Yi
Hyegu was published in 1957 (1957: 379-80).

Pian 1967: 52-3 gives a chart of Cai’s modes.

The fourth originally had six verses, but verses four, five, and six were
sufficiently brief to be condensed into one. See Provine 1988: 157; Pian
1967: 161.

The changes are also apparent if the Chinese melodies (transcribed in
Pian 1967 and Picken 1956) are compared to the Korean, transcribed in
Provine 1988.

Provine 1992 gives a much more complete history of the ritual orchestra
than I can do here.

They comprise [ and XIII in Provine 1974 and [ and IX in Provine 1988.

Here I am only concerned with the court instrument. Folk instruments,
most commonly today played in sanjo ("scattered melodies” with drum
accompaniment), are 10cm or more shorter, have an even larger
blowing hole, and are often played without using the bottom one or two
finger holes (see Howard 1988: 99-113). The pitch produced with a given
fingering is some 15% higher than comparable fingerings on court
instruments.

To make matters confusing, in Pak’s 1990 article two blowing
instruments appear which are dated to the end of Koryo (late 14th
century) and early Choson (15th century) times. These seem to suggest
pitches roughly a perfect fifth higher.

Until 1988 glossed in English as the National Classical Music Institute.

The phonetic theory of solfege offered by Hughes (1989) suggests that
some verbal notations I recorded (in Howard 1988) were incorrect. But |
simply recorded what Korean musicians, not aware of any inconsistency,
related. Some verbal notations for wind instruments, incidentally,
actually descend from zither notations (eg, Kim Mugyu 1980).

Cheju is recognized as having two distinct folksong styles, with
additional complications caused by earlier waves of migration from both
the southeast and from central Kyonggi.

Howard 1990 is based on my doctoral fieldwork on this island. In the
early 1980s the population stood at about 82,000, but this declined to
around 56,000 by 1990.

The popular term for this, coined by the journalist Ye Yonghae in the
mid-60s, is In'gan munhwajae (Human Cultural Asset)

Howard 1988: 49-77 provides an account of the p7ri in both court and
folk use.
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Wednesday 10:00
Habib Hassan Touma

Basics of Ratio Wrapped in Space, Time and Timbre:
On the Structure and Semantics of Arabian Music

Ever since ancient times philosophers and scholars have been often
occupied in examining numerical behaviour in music. As early as
the third millennium B.C., thoughtful men and women in ancient
Mesopotamia contemplated the interdependency of musical
structure (particularly pitch scales and rhythmic organization) and
numbers. They concluded that music was indeed based on tone
combinations and rhythmic structures revealing a rational
organization based on ratios, numbers and fractions. The beauty of
sound structure was thus devised through organized basics of ratio
wrapped in space and time.

Verbal articulations and philosophical-mathematical treatises on
music continue to exist in manifold cultures of the Earth: in Asia,
Africa, the Pacific Islands, South America and Europe. Music, “an
arithmetic exercise of the soul, unaware of its counting” (Leibniz
1712), is borne out repeatedly all over the globe. However, at the
beginning there was music; only thereafter followed the rational
description of its mysterious structure. The tremendous power of
music on human beings and its intense emotional content,
especially in social contexts and in religious ceremonies, urged
some thinkers to put forth philosophical and mathematical analyses
of the phenomenon music, aiming at unravelling its mystery and
its overwhelming power on its listeners. However, the question as
to why a musical idiom in a specific cultural area is structured as

such and not otherwise, remains unanswered in most cases.

In contemporary Western music, however, the case is different!
Composers seem to be aware, at least during a particular phase of
their creative life, of why their music is structured as it is and not
otherwise. They are even prone to disclose techniques concealed in
their work. This may perhaps clarify the difference between an
Asian or African traditional composer and a Western composer.
While the traditional Arabian, Indian or Turkish musician is
overwhelmed by his or her tradition, and blindly respects laws of
musical composition orally transmitted by past generations, we
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observe that the Western composer historicizes his/her musical
culture through a continuous innovative act of compositional
technique and in some cases, through the rational metamorphosis
of tonal structures, compositional laws, rhythmic and metric
organization of music, particularly in todays computerized music.
The traditional non-Western musician/composer on the other hand
lives in an eternal yet slightly changing cultural context, abiding
by a tradition orally passed down by the masters of bygone ages.
In spite of these basically contrary traits, we can detect a common
denominator to both Western and non-Western musicians, viz.
basics of ratio wrapped in space (pitch), time (metre) and timbre
(colour), common to almost all musical cultures of the world.

The beauty of sound structure has been often judged through the
organized ratio basics wrapped in space and time. Numbers and
ratios have thus helped us to define pitch, rhythm and colour: pitch
has been described as a number of vibrations in time, the beat as
an impulse in relation to other beats, likewise in time, and the
spectrum of sound colour has been fixed on sonographs to explain
the characteristics of a specific sound. It is hardly possible to
describe a tonal system of a people who had not yet invented their
own instruments. Only after the invention of musical instruments
were scholars capable of establishing the rational organization of
musical tones. The history of the Arabian tonal system, for
example, can be traced back to the VIIith century A.D., a history of
the way in which scholars fixed the frets on the neck of a lute.

It is the main object of this paper to concentrate on the basics of
the Arabian musical system by displaying at length the rational
organization of its tonal scales and perhaps rhythmic patterns. The
interrelationship between the mathematical organization of scales
and emotional content latent in the music based thereon, i.e. on the
magam, is the second objective of this paper.

In Arabian music, ratio wrapped in space might be approached
from three different perspectives, all of which lead to a logical
description of the mathematical ratios its tonal system is based on:
- the octave is the sum of 1200 cents,

— the octave is the sum of 53 equal commas and

— the octave corresponds to the whole number 2.
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Thus a tone can be defined in relationship to either 1200 cents, to
53 commas or to the whole number 2. If in the first case a tone is
at e.g. 355 cents, in the second case it will be at 16 commas and in
the third case its pitch will be expressable as the ratio 22:27 in
relation to the first tone of the octave. While the prime, fourth, fifth
and octave maintain constant values in all scales, we shall see that
the values for the seconds, thirds, sixths and sevenths fluctuate,
which, as a consequence, is responsible, among other factors, for
the intensification or mellowing of emotional contents latent in the
repertory of the different magams of Arabian music.

On Listening to, Understanding and Making Music -
The Metrics of Musical Cultures?

In this symposium, speakers talked during the last two days about
music they are familiar with. In most cases they were discussing
their own “mother tongue music’. When Jim Tenney talked about
music in fact he was talking about Western music. We very often
take for granted that the music we are talking about is Western
music. Though music is a universal phenomenon it is hardly a
universal language. There are as many musical languages as there
are musical cultures in the world. Therefore to understand music
demands more effort than merely listening to its structure, and to
make music presupposes a perfect command of its syntactic and
semantic structures. Yet, listening, understanding and making
music are not limited to members of a musical culture alone, but
can be learnt and mastered by those alien to that culture. It is the
familiarity with a musical culture, with a musical genre or with a
compositional style which fosters the understanding of a music and
provides the means, perhaps the right, to talk about a music.

We could describe music in any culture by observing it through
three dimensions: space, time and timbre. It is the degree of rigid
or loose organization of any one of these three dimensions which
characterizes a musical culture and stamps it as such. The spatial
dimension might exhibit either a rich or a poor tonal organization,
so that its scales may include a number of notes gleaned from a
tonal pool of 5, 12, 17, 24, 53 etc. equal or unequal tones. Temporal
organization may exhibit simple or complex relationships between
short and long notes. Such relationships may be confined to
combinations of the three prime numbers 1, 2 and 3 (so ratios of
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short:long can appear e.g. as 1:2, 2:3, 2:4, 4:6, and can be reduced
to these three prime numbers), or extend the values of these ratios
to higher prime numbers such as 5, 7, 11, 13, 17, 19 etc. - here the
relations short:long or vice versa would appear as 5:7, 7:13, 11:17 etc.
Similarly we find some East Asian cultures dwelling on a minimum
number of pitches for a long time so as to enrich the minimally
conceived tonal-spatial dimension of the music. Some of you may
disagree with me in considering in addition to space and time a
combination of these two - timbre - as a third music dimension.

To summarize, specific cultures in the world give priority to spatial
organization following a specific law. In some cultures spatial tonal
organization is so organized and predetermined that it is of high
priority and functions as an identifying factor of this music. Other
cultures stress temporal organization and the division of time.
There are also cultures which give main priority to timbre: Ann La
Berge’s piece which she played for us yesterday stressed timbre,
neglecting intricate time structures, which most of us noticed as a
clear decision. Therefore how a culture divides time or organizes
tones in space and selects timbres for tones identifies the culture.

Methodologically speaking, this could in fact be a possible way of
measuring musical cultures of the world. Let us take a specific
example. Arabian, Indian, Turkish and Persian music give priority
to their tonal spatial organization. They derive heptatonic scales
from divisions of the octave into 17 or 53 tones or more. In such
scales they give special priority to the melodic aspect of their
music, to specific tones in space, meaning that this pool of tones in
space is governed by a hierarchy of tones, specifically the magam.

When a culture gives priority to one dimension one expects that
the other two are less projected. Chinese, Japanese, Vietnamese or
Korean music give more priority to the dimension timbre than to
those of space and time. The Korean flute taegum, for example, has
an extra built-in membrane which distorts the purity of its pitch
and adds a nasal buzzing to the blown notes. Why is this? I believe
it agrees with the music mentality of East Asians, who attend
more to timbre than to space or time. Of course this does not mean
the elimination of spatial or temporal dimensions; these are always
present and discernable, yet pushed aside - the timbre of each note
catches the listener’s main attention and forms the foreground.
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Temporal division in almost all musical cultures south of the
Sahara shows an intricate structure in which tonal space plays a
lesser role. A xylophone player from Ghana, for example, would
include a piece of wood in his instrument with an unidentified pitch
called the dead note. This dead note purposely metamorphoses the
pitch of that specific point in his xylophone. It is not the number of
different tones in the scale under consideration that counts for the
musician or listener, it is rather time and the way it is divided. It is
not enough to know that in the Arabian scale there are 17 or 53
tones. More crucial is to find out what categories of scales can be
constructed out of this pool of tones - here we could glean ten or
eleven tones to make a row, which I will call a magam-row, with a
modal hierarchy defining the personality of the magam.

Aesthetic Knowledge

Discussing musicological problems implies dealing with an eesthetic
knowledge, which signifies scientific and assumptive knowledge.
When [ say the fifth is the equivalent of the ratio 2:3 and the fourth
of 3:4, I am dealing with a scientific knowledge valid for Arabs,
Turks, British, Chinese - for anybody. When I, on the other hand,
say that the voice of this or that singer from Upper Egypt sounds
like a bell, praising his or her voice, then I am dealing with an
assumptive knowledge valid in the society in question. Similarly a
Muslim would not eat pork because it is against Islamic religious
rules. It is also not permissible for a Jew to eat meat and milk from
the one and the same plate at the same time.

Now, in dealing with music we deal with @esthetic knowledge which
by itself includes scientific and assumptive knowledge. In trying to
understand cultures other than our own, we are guided factually by
our own @sthetic knowledge as a point of reference, which tends to
“correct”, subtract or reduce what is alien to our own music,
especially in the values of pitch, time and timbre. What is beautiful
and serene in a Chinese opera for a Chinese listener might be ruled
ugly and unmusical by a European ear untrained in Chinese music.
A Verdi opera or Beethoven symphony might seem chaotic noise to
an Arab. The Arabian third, the sikah?® [e%], would be found false
and out-of-tune by a European violinist and would be “corrected”
and reduced to a major third. Responsible for this “correction” is
the @esthetic knowledge and the musical mentality of the listener.
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Each people on this globe has its own musical mentality,
describable as practised esthetic knowledge in culture. Music
mentality is undoubtedly governed by culture itself and is further
responsible for the plurality of musical cultures in the world.

[ shall try to define culture empirically, historically and
scientifically. Empirically, it is the culture which people accept and
identify as their culture, and their neighbours would also agree
that it is the culture of their neighbours. Historically it is that
culture which exhibits a written or orally transmitted history.
Scientifically it is that culture which should be described by
applying scientific knowledge yet without ignoring assumptive
knowledge. Culture is a set of behavioural rules which are
governed by three decisive factors: belief (religion), language and
tradition. Arabian culture is defined as governed by Islam, the
Arabic language and tradition. Islam is the religion which governs
all aspects of life in Arab society. Arabic is the medium in which
an Arab thinks, expresses his thoughts, feelings, rituals and ideas.
Tradition, the third factor, is based mainly on assumptive
knowledge, which has been transmitted orally and also in written
form from one generation to another and has thus shaped what we
know now as tradition in an Arabian society.

The Arabian tonal system

[ shall limit myself to only three, at the most four scholars who
have dealt with the Arabian tonal system during the last twelve
centuries. Their contributions are considered original and form
milestones in the history of Arabian music. In fact there are too
many scholars dealing with the Arabian tonal system during this
period: al-Kindi was the first important scholar of the VIIith
century followed by the great al-Farabi of the Xth century (d.950),
and thereafter by Ibn Sina, or as you know him, Avicenna of the
XIth century (980-1037). During the XIIIth century the great
Safiyyuddin al-Urmawi (1216-1293) offered original contributions to
the subject followed by many scholars who based their thoughts on
his treatises. Only during the XIXth century do we find another
original contribution; it came from the Syrian Mikha'il Mishaqa. It
seems that at different periods of history whenever something
went wrong with music or culture some intelligent scholar or
thinker was asked to intervene and help to correct the case.
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And I believe that was often the case with the tonal system. Zalzal
was a great lute player who lived in the 1Xth century in Baghdad
and used to perform for the Caliph HarGn ar-Rashid. His name is
associated ever since the IXth century with the pitch of the third
tone of the Arabian scale, so that this pitch became known as his
third. The value of the Zalzal pitch is somewhere between [e] and
[eb]. Several scholars of that period tried to fix this value, and as we
shall see, have calculated various possibilities for this tone. It was
given the value of 22:27 by al-Farabi, Ibn Sina gave it 32:39. Both of
these fractions cannot be reduced to 2:3, ie. they are not
Pythagorean tones. Safiyyuddin who lived in Baghdad during the
XIIIth century calculated the fraction of Zazlals third in a unique
way worth displaying. He bases this third specifically, and the
Arabian tonal system in general, by applying the Pythagorean
method of calculating pitch. The virtue of his method is that he
explained an Arabian tone, foreign to the Pythagorean system,
through that very system, in which the scale is a sum of natural
fiftths. He gave this third the pitch value [fb] (38:213 = 6561:8192).

The history of the Arabian tonal system is the history of
calculating the fret distances on the neck of the short-necked lute.
Since the strings of the lute are tuned in fourths? this means the
descriptions of the tonal system guided the lute player on how and
where to stop a note on the neck of the lute and consequently the
way the tetrachord was divided. Al-Farabi divided it into ten
different tones, Mishaqa also gave it ten, Ibn Sina gave it seven
tones - the difference between Mishaga’s and al-Farabi’s tones lies
in the fact that Farabis are ten unequal quarter-tones, while those
of Mishaqga are inclined to be ten equal intervals. The octave was
attained by putting two tetrachords together and adding another
whole tone - as you may imagine there are several ways of doing
this.

Look at the tetrachord [c-f] in the Middle Ages as given in Exl
There are ten frets here. While - based on an open string [c] -the
first [dbl, second [c#l, fifth [d], sixth [eb], seventh [d#], ninth [e] and
tenth [f] frets represent tones known to most of us, we see that
the third, fourth and eighth frets do not match nameable tones of
classical Western music or the Pythagorean tonal system; these
latter pitches are at 145 cents for the third fret, 168 for the fourth
and 355 for the eighth.
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Ex.1- The Arabian Scale: the tetrachord [c-f] in the Middle Ages

Open String [c] 1°

Fret | [d5] -{mm— 50
2[ckl]

6 [eb] — 294

498

cents: 0 100 200 300 400 500 600

Each tone in the Arabian tonal system has a name, which can be
seen in Ex2: the first fret [db] gives the tone za’id, the second
mujannab, the third [d] sabbaba, the fourth wusta al-furs, the fifth
wusta zalzal the sixth [el binsir and the seventh [f] khinsir3 As
can also be seen, their pitch is expressable as whole-numbered
Arabian commas - za'id is at 4 commas, mujannab 8, sabbaba 9,
wusta al-furs 13, wusta zalzal 17, binsir 18, khinsir 22. The whole
octave contains 53 commas. Therefore if we multiply each value by
22.64 (=1200/53) we get the value of the tone in cents.

Ex.2 - The tetrachord [c-f] in names and commas (cent values in brackets)

open
stringmuﬂaq[c]li??????????????

za'id [db]
mujannab S :
Sabbaba [d] IR 0 (204)
wusta al-furs leb]
wusta zalzal
binsir lel
khinsir [f]

,,,,,,,,,,,,,,,,, 17 385)

22 (498)

|
commas; 0 5 10 15 20 25

Touma: Structure and Semantics of Arabian Music g9



The Arabian comma is a tiny tempered interval, first discovered by
Ching Fang, a Chinese scholar who lived around the year 145 A.D.
He added 53 fifths in a circle of fifths, and then transposed the top
note 31 octaves down, arriving only 3.6 cents from his starting
point. As already said, dividing 1200 by 53 you get 22.6415 cents,
the Arabian or Holdrian comma - the perfect fifth contains almost
precisely 31 of these. Now, the Pythagorean comma has 23.46 cents
(twelve fifths minus seven octaves). The Syntonic comma (four
fifths minus two octaves and a third) has 21.506 cents. Some
scholars in discussing tonal systems say “comma” without
differentiating between these three. We usually use the term to
mean the Pythagorean comma and falsely say it has 24 cents,
because in fact it is smaller than that. 53 Arabian commas add up
to an octave. Thus an interval of nine Arabian commas, e.g. [c-dl,
is 9 x 22.6415 = 203.77 cents. Some Turkish scholars falsely equate
the Arabian with the Pythagorean comma - multiplying 23.46 by
53 we get 1243.38 cents for the octave, 43.38 cents too high.

Ex.3 shows a diatonic scale with pitch distances in cents from the
tonic [c] as established upto one octave by Farabi, Safiyyuddin,
Mishaga and the Congress of Cairo in 1932, furthermore upto the
fifth by the scholars Collangettes, Yekta Bey, Manstr ‘Awad,
Darwish, Raghib Bey and Shalftin - notice the marked fluctuation
in the values for the third (sikah) and sixth (husayni).

Ex.3 - A comparison of scale degrees measured by different sources

4 B arabi
e Safiyyuddin
Sikak Mishaga |~
. ongress
ollangettes
ekta Bey |+
Mansur ‘Awad
£ i Darwish
= Raghib Bey |
............. Shalfun
g
. 8 husayni
bb
o

0 cents 200 400 600 800 1000 1200
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The placement of the frets in the Middle Ages.

Ex.4 shows detailed fret names (with Western equivalents where
applicable) as well as interval ratios and cent values and stopped
string lengths as fixed by al-Farabi, Ibn Sina and Safiyyuddin.

Ex.4 - A comparative description of fret placement in the Middle Ages

. interval ratio (cents), string length*
Fret | Name/descriptor | .1 Farabs lbnSina | Safiyyuddin
Open String mutlaq | [c] 1:1(0), 20736 | [c] 1:1(0), 20736 | [c] 1:1(0), 20736
Neighbour of the |[dv] 243:256 256:273 [db] 243:256
forefinger fret (90), (111), (90),
(Pythagorean limma) 19683 19444.75 19683
2 | Neighbour of the 17:18 12:13 [eh] 59049:65536
forefinger fret
(halfway between (99), (139), (180),
mutlaq & forefinger) 19584 19140.92 18683.47

[c2] 2048:2187
(114), 19418.07

3 Neighbour of the
forefinger fret 149:162 [d] 8:9 [d] 8:9
(halfway between (145), (204), (204),
mutla ersian
middle finger) 19072 18432 18432
4 Neighbour of the
forefinger fret 49:54 [eb] 27:32 [eb] 27:32
(halfway between (168), (294), (294),
mutla alzal’s
mid(ﬁe finger) 18816 17496 17496
5 Forefinger fret [d] 8:9 (204), 32:39 (342), |6561:8192 (384),
sabbaba 18432 17014.15 16607.53
6 | Neighbour of the leb] 27:32 (294), | le] 64:81(408), |[e] 64:81(408),
middle finger fret 17496 16384 16384
7 Persian 68:81(303), [f] 3:4 (498), [f] 3:4 (498),
middle finger fret 17408 15552 15552

1[d#] 16384:19683 |

(318), 17260.51

* all string lengths except

8 Zalzal’s 22:27 (355), VI
middle finger fret 16896 th‘t’ji)g;fﬁ;i zfiiiife"_a
9 ring finger fret le] 64:81(408), .
g bjn%s o 16384 numbered relations
10 little finger fret [£] 3:4 (498),
khinsir 15552

Touma: Structure and Semantics of Arabian Music
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The Tonal System of Safiyyuddin

The tonal system of Safiyyuddin al-Urmawi has been discussed
widely by well-known European music theoreticians, among them
the French Villoteau and Fetis, the Germans Kiesewetter, Ambros
and Helmbholtz. In his book Die Lehre von den Tonempfindungen als
physiologische Grundlage fiir die Theorie der Musik (“On the
Sensation of Tone as Physiological Basis for the Theory of Music”)*
Helmholtz based his research on the work of Kiesewetter, the
author of Musik der Araber, nach Originalquellen dargestellt
(“Music of the Arabs, Presented after Original Sources™® These
theoreticians helped establish a theory of an Arabian tonal system
incorporating “third-tones”, which falsely assumes that a whole
tone in Arabian music is a tripartite interval. This conclusion was
occasioned by Safiyyuddin’s own treatises - in his Kitab al-Adwar
and ar-Risala ash-Sharafiyya he divides the octave into seventeen
unequal tones, viz. a combination of limma and comma, a fact
which misled European scholars of the XIXth century into
overlooking the fact that if a whole tone is splittable into three
intervallic units, one has eighteen equal, not seventeen unequal
pitches in the octave, as in Safiyyuddins theoretical discourse.
Safiyyuddin’s theory would need one more tone to form eighteen
tones in the octave. It was the Briton Ellis who corrected this
error, which lay in the misinterpretation of the value of the comma
as applied by Safiyyuddin in his XIIIth century treatises.

Safiyyuddin’s row of seventeen tones to the octave is based on a
succession of limmas (90 cents) and commas (24 cents):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
L L¢cL L CLULUILTCTLTELCTLL L C,

where L. means “limma” and C means “comma’.

His tetrachord was structured thus (refer back to Ex.4):

Frets: 1 2 3 4 5 6 7
Ratio: L1 243:256 59049:65536 8:9 27:32 6561:8192 64:81 3:4
cents 0 90 180 204 294 384 408 498

[c] [db] [ew] [d]l el [fh] [e] [f]

His tonal system he based on an application of the Arabic alphabet
to name each tone of the scale, using the characters seen in Ex.5.

1:
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Ex.5 - Safiyyuddin’s seventeen-tone system

Note | Arabic [pronun-| Latin |Note-| Interval [Tuning planinterms of
no. [letter(s)|ciation? |equivalent |name | in cents |relative string lengths
1 ! alif a c : open string
2 | < ba’ b db 38 ﬁirmmmna; 9/8 of Note 5 [ef]
3| jim i L5 mma) 9/8 of Note 6 [f]
4 5 dal d d 5 (‘ifmma; 8/9 of open string lc]
5 o ha’ h et (limma) 9/8 of Note 8 [f]
6 9 waw w th A mma) 3/2 of Note 16 [ch]
7 3 zayn z e oo (‘ifmma; 8/9 of Note 4 [d]
8 T ha’ h f 30 (limma) 3/4 of open string [c]
9 L tah t 2 f5o (hmma) 3/4 of Note 2 [db]
10 S ya’ y ar 2 3/4 of Note 3 [eb]
1 24 (comma) )
11 L ya'alif ya - S 2/3 of open string [c]
2| <« |yaba | yb &l (limma) 2/3 of Note 2 [db]
B | = |yajiim| i bh [ mma) 3/4 of Note 6 [f4]
4 | >~ |yadal | yd a5 (‘ifmma; 3/4 of Note 7 [e]
15| % |yaha | yh bh SR 374 of Note 8 [f]
, . 190 (limma)
16 ¥ |yawaw| yw ch ; 3/4 of Note 9 [gf]
i _, ., 190 (limma)
17 ¥ |ya'zayn yz drb I oo 3/4 of Note 10 [ath]
8| @ |vyzhd | vh ¢ 9 1/2 of open string [c]

Safiyyuddin’s method for establishing the seventeen tones in the
octave is characterized by his calculation of non-Pythagorean tones
such as the third (sikzh) and the seventh (awj) by employing
Pythagorean values and thus differing from that of al-Farabi or
Ibn Sina whose calculations of the third, for example, do not refer
to Pythagoras - al-Farabis third is set at 22:27 ie. 355 cents
whereas in Safiyyuddins system its value is 6561:8192, i.e. 384 cents.
Therefore in constituting his tonal system, Safiyyuddin limited
himself to combinations of Pythagorean intervals, e.g. octave 1.2,
fifth 2:3, fourth 3:4 and major second 8:9. He further conceived his
system on the monochord by dividing the string into various
numbers of halves, thirds, quarters, eighths and ninths (actually in
the ratios 1:2, 2:3, 3:4, 89, 9:8 and 3:2), thus determining the
seventeen tones in the octave. His plan of tuning can be seen in
the rightmost column of Ex.5.
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Of special importance for us are the tones [e#] and [fb], for which
Safiyyuddin has also assigned two frets on the neck of the lute, viz.
frets 2 [e#] and 5 [f»], without however reporting why he has done
this, although both frets are his own creation and were not known
before he wrote down his treatises. Safiyyuddin names the tone [f7]
wusta zalzal, a tone to which al-Farabi assigns the value 22:27 and
Ibn Sina 32:39. The difference between wusta zalzal of Ibn Sina and
al-Farabi and that of Safiyyuddin is unambiguous - Safiyyuddin’s
wusta zalzal is a Pythagorean tone which, curiously enough, does
not appear in the Pythagorean tonal system; the wusta zalzal of
al-Farabi and Ibn Sina are not Pythagorean tones at all. Yet all
three tones are significant in the Arabian tonal system.

We have seen above that Safiyyuddin’s tone [fr] or wusta zalzal is
set at 384 cents, and we also know that Didymus and Ptolemy
calculated the interval [c-e] assigning for it the value 4:5 which is
386 cents. The diatonon syntonon of Ptolemy assigns for [c-d] the
frequency ratio 8:9 (204 cents), for [d-e] 9:10 (182 cents) and for
[e-f] 1516 (112 cents). Safiyyuddin, on the other hand, assigns for
[c-d] 204 cents, for [d-fb] 180 cents and for [fb—f] 114 cents; he also
assigns for [c-e] 180 cents, for [ew-fh] 204 cents and for [f5-f] 114
cents. In fact this tiny difference between Ptolemy’s and
Safiyyuddins intervals is the difference between the Pythagorean
comma [eh-d] of 524288:531441 (24 cents) and the Didymian comma
[d-d] of 80:81 (22 cents): 32768:32805 (2 cents). This tiny interval is
known to musicology as a “schisma’”, and was first referred to by
G. M. Artusi in 1600 in Venice in his treatise Imperfettione della
musica moderna.

The permutation of [eh]-[d], or [el-[fb] is known as “schismatic
permutation”. It is the merit of Safiyyuddin al-Urmawi to be the
first scholar ever to apply this mechanism in practice; it was
Helmholtz who drew our attention already in 1862 to Safiyyuddin’s
schismatic permutation. Its application in the Arabian tonal system
is discussed by Safiyyuddin when he describes the structure of the
different magams, e.g. Rast as [c d fv f g b bb c'] - see Ex.6a+b.
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Ex.6a - three renditions of the Ex.6b - An example of Safiyyuddin’s

maqam-scale Rast schismatic permutation vis-a-vis Ptolemy
al-Farabi | Ibn sina |Saflyyudin Ptolemy Safiyyudin
c 0 c 0 c 0 Interval| ratio |cents|Interval| ratio | cents
d 204| d 204 d 204 c-d |89 [204 | c-d | 89 204
er 355 | er 342 | f» 384 eth-fr [P 0a 204
f 498 | f 498 | f 498 (d-¢) rlimma
g T702| g T702| g 702 c-d [9:10 | 182
limma

a5 853 | a5 840 | bb 882 | | 4o |op0|1s2 | 4P

(~d-e) }limma| 180

bh 996 | bh 996 | bh 996 ST
¢ 1200 ¢ 1200| ¢ 1200 o) klimmal 180
Non-Pythagorean tones italicized fr-f |commal

in both tables e-f |15:16| 112 | (Zo_f) blimma| 114

The tonal system of Mishaqa

XIXth century musicians in Syria discussed whether
the third tone of the Arabian scale, sikah, [e],
coincides with hijaz, [f:], the third tone from [d], when
the music is transposed up a tone - some Arabian
flutes are in D, some in C or G. For musicians things
were unclear especially when having to perform Rast
on a D flute. Their question: is hijaz here a sikah on [d]
or is it the independent hijaz as applied in another
magam? Yet all agreed that hijaz cannot be sikah at all!
The latter exists only as the third tone of a scale on
[c], for sikah and hjjaz each has its own personality. To
resolve this dilemma the mathematician Mishaga was
approached; he devised a diagram geometrically
dividing the octave into 24 tones and fixing the fret
distance for each quarter-tone on the long necked lute,
the tambour. His division is mathematically based on
the 24th root of 2. See the diagram in Ex.7: AB is the
string length; AC=AB/9; AE-EB=AB/2; EF-FB=EB/2;
AD=AC/4=AB/36; BAC=90°. Divide AE and EF each into 24
equal parts; connect DB. Each horizontal line joining AB
and DB sets the gap between two consecutive frets on
the neck of the lute, whereby the topmost one is for
the first quarter-tone, the next down for the second
etc.

Ex.7 - Fret
distances set
by Mishaqa

AD C
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The magam

The term “magam” designates a modal framework in the music of
several peoples living in North Africa and Asia. It denotes not just
the intervallic distances between tones of specific order, but rather
the mood created through realization and presentation of the modal
infrastructure based on such an order of intervallic distances,
which themselves make up what [ call the “magam-row” or the
“magam-mode”. The magam phenomenon characterizes the music
of a vast geo-cultural region which includes the Arab countries,
Iran, Turkey, Uzbekistan, Tadzhikistan and Xinjiang in mainland
China. From a historical point of view, the term “magam” became
the common property of Arabic-Islamic musical scholars in the
XIVth century and it is still in use, embedded in musical cultures
along the Silk Road from the Atlantic Ocean in the West up to
Xinjiang in the East. The magam phenomenon is a monodic musical
conceptualization, the core of which is predetermined tonal-spatial
infrastructure. It disposes of a repertory of instrumental and vocal
pieces firmly established in an @sthetic musical mentality proper of
the musical cultures of the region. The ssthetic mentalities in this
large geographical area have been responsible for moulding the
framework of this musical phenomenon. There is the Arabian
maqgam, the Turkish makam, the Iranian dastgah, the Azerbaijani
mugam, the Tadzhik and Uzbek maqam, and the Uigur magam.
Most of these terms have been known ever since the XIVth century
in the legendary cultural centres of Uriimgqi, Kashgar, Dushanbe,
Tashkent, Samarqgand, Bukhara, Tabris, Teheran, Baghdad, Istanbul,
Cairo, Tunis, Algiers and Fez. It is the esthetic entity of the
magam phenomenon that has determined the form-building
elements of the composed and improvised forms of the magam,
instrumental as well as vocal, secular or religious. Yet, the ideals of
this musical phenomenon are determined in the firm union of
poetry and music on the one hand, and in the incorporation of a
monodic melodic line with a recurrent rhythmic pattern called the
ustl, mizan, zarb or iqa’ which appears in the composed form of
the magam. The magam phenomenon represents a unique
improvisatory process in the art music of Arabs, Turks, Iranians,
Uigurs, Tadzhiks, Uzbeks and Azerbaijanis, all of whom have been
cultivating the magam for many centuries and are proud to point
out the names of their many legendary magam masters.
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We must differentiate between 1) the systematic realization of a
magam as a unique improvisatory process which aims at creating a
specific feeling, and 2) the accomplished composed form of a
magam based on a selective choice of latent elements for its
systematic realization. To unravel the infrastructure of the magam
phenomenon we have to first examine the immediate improvisatory
process. Only then can we understand the accomplished composed
form of a specific magqam.

The development of the magam in its authentic vocal and
instrumental form, ie. in its unique improvisatory process, is
determined by two primary factors: space (tonal) and time
(temporal). The structure of the magam thus depends on the extent
to which these two factors exhibit the fixed complex of the tonal
parameter and the free manner of running the rhythmic-temporal
flow of the monodic melodic line. The tonal-spatial component is
organized, moulded and emphasized to such a degree that it
represents the essential and decisive factor in the magam, whereas
the temporal-rhythmic aspect in the authentic magam form is not
subject to a definite form of organization. In this very circumstance
lies the most essential feature of the magam phenomenon: a free
organization of the rhythmic-temporal and an obligatory and fixed
organization of the tonal-spatial aspect.

It is in this tonal-spatial organization that the structural and
semantic characteristics of the magam are displayed. The singular
feature of this form is one which is not built upon motifs, their
elaboration, variation and development, but through a number of
melodic passages of varying length which realize one or more
tone-levels in space and thus establish the various phases in the
development of the magam. In its authentic improvisatory form,
the magam is thus based on a systematic realization of tone-levels
which gradually move up from lower to higher registers, or down
from higher to lower registers, but gradually ascending to the
higher registers until a climax is reached, at which point the
perfect form of the magam is completed.

The magam is thus not subject to specific rules of organization in
its temporal parameter, i.e. it has neither a regularly recurring and
established bar scheme nor an unchanging beat. The rhythm
characterizes the performer’s style and is dependent on his manner
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and technique of playing or singing but is never characteristic of
the magam as such. This is one reason why, from a Western point
of view, the magam has sometimes been regarded as improvisation
without form - particularly since clear and fixed themes, together
with their subsequent elaboration and variation, are absent. The
absence of a fixed rhythmic-temporal organization has hampered
and still hampers some musicologists, who have drawn astonishing
conclusions which have unfortunately been accepted and repeated
as self-evident - certain temporal features have been unjustly
attributed to the magam, viz. “motivic groups”, “definite tempi”,
“definite variations”, “melodic pattern”, “melodic models” or
“tono-melo-syndrome”. These designations do not correspond to
the actual and latent structural elements of this phenomenon,
because the magam is a form represented by fixed tonal-spatial
organization peculiar to the respective magam-row.

Tone levels
A tone-level can be realized by constant tone repetition (Ex.8),

Ex.8 - a tone-level on [g] for repetition

I,‘?#I|II|II|II|II|II|II|I i |
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or through an emphasis of a tone by leaping into it or filling a
certain interval leading to that tone (Ex.9),

Ex.9 - a tone-level on [g] for leaping and filling
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or through building up a melodic axis around that tone (Ex.10).

Ex.10 - tone-level on [g] as musical axis
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A tone-level can for instance be set up around the note [d] and
extend over the octave it is centred in, where [d] becomes a pivotal
point encircled and emphasized by its neighbouring tones (Ex.1l.

Ex.11 - a tone-level on [d] as central tone
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It is not unusual, however, for a tone-level to have more than one
tonal centre; for example, one of the tones of the said octavic range
(here [f]) can form a secondary centre functioning as a kind of
satellite to the central tone [d] - the intervallic relationship
between the primary and secondary centres gives the entire
tone-level a characteristic colour (Ex.12).

Ex.12 - a tone-level around [d] with a secondary centre on [f]
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The full exploration of the possibilities of such tone-levels
represents a new phase - with its characteristic central tone - in
the build-up of the magam. Some musicians develop a particular
phase at length, others do so quite briefly; some extend the range
of the tone-level and move quite a distance away from the central
note, others restrict themselves to a narrow range around the
centre. But in all cases the central tone of a tone-level is of the
utmost importance for the musicians, because it is the nucleus of
the entire phase.

The aggregate of the phases determines the form of the magam, a
form which is shaped by the succession of the central tones of the
tone-levels. Each central tone is encircled by neighbouring tones
and is sustained for a duration determined by the musician. One
musician may take seven seconds to present a tone-level, another
forty seconds.
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The phase

In every magam the central tones stand in different relationships
to one another and always produce at least two different intervals:
for example, a third plus a second, a fourth plus a second, a third
plus a fourth or a third. These intervals are dependent upon the
structure of the magam-row and this upon the tonal system of
Arabian music. They determine the mood and the nuclear structure
of the magam. The nucleus consists of the sum of all central tones
which can be produced to three or more notes.

The first and last tone-level of a magam are centred on the first
degree of the magam-row. The magam is divided into melodic
passages, the number and length of which are not predetermined.
In each melodic passage, one or more tone-levels are combined and
contrasted, and they can also replace one another. The number of
tone-levels, without repetitions, is predetermined in every magam
and can be reduced to a nucleus. Native audiences recognize the
standard of the originality and ability of a musician in the way he
or she illustrates, combines and contrasts the tone-levels or
phases. Therefore, all possible combinations and repetitions of the
tone-levels, as well as their departure from and their return to the
first tone-level, proceeding to the highest tone-level (the climax of
the magam) are regarded as standards by which the performers
creative originality, ability and musicianship are judged. The
realization of a truly convincing and original magam requires a
creative faculty like that of a composer of genius. Nevertheless,
this phenomenon can only in part be considered a composed form
because no magam can be identical with any other: each time it is
recreated as a new composition. The compositional factor shows
itself on the predetermined tonal-spatial organization of the fixed
number of unrepeated tone-levels, while the improvisational aspect
freely unfolds in the rhythmic-temporal layout. The interplay of
composition and improvisation is one of the most distinctive
features of the magam phenomenon in Arabian music.

It is in this tonal-spatial organization that the structural and
semantic characteristics of the magam are displayed. In accordance
with the predetermined tonal-spatial model of the magam, a
mosaic-like structure of musical form evolves. It is made up of a
sequence of melodic elements which are repeated, combined and
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permuted in the course of the presentation of the magam. The
presence or absence of an identifying element and the place or
order in which it appears is prescribed by the semantics of the
tonal-spatial structure of that magam. Let us listen to a Koran
recitation which should elucidate the tonal-spatial structure of the
maqgam Bayati.

(Tape example)

I planned to play other, measured music. But I think we don’t have
the time for that. Thank you very much.

e~

Approximate guide to the pronunciation of Arabic words in this text:

['l: glottal stop (hamzah), as in the initial vowel of “absolutely”; [‘]: very
strong guttural (‘ayn) by breath expulsion through compressed throat;
[a, al: short, long “ah” / [awl]: as in “ouch” / [h]: as “h” but strongly
aspirated and velarized, ie. articulated deep in the throat / [i, il as in
English “pill”,“peel” / [kh]: as in German “Bach” / [ql: velarized “k” /
[r]: rolled “r” / [u, @l as in English “pull”,“pool” / [yl as in English
“yellow” / [d, s, tl as in English but with flattened, broadened tongue /
[b,d, f, h, j, k, I, m, n, s, sh, z] as in English.

—r
I
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I
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The terms za’id, mujannab, sabbaba etc. were used in the Middle Ages;
one now employs sikah, hijaz, husayni, awjetc. Mutlaq is still in use.
Braunschweig 1863, 1865, 1870, 1877, 1896 and 1913

Leipzig 1842

Touma: Structure and Semantics of Arabian Music 21



Wednesday 11:15
Stan Tempelaars

Unheard Sounds

This text is intended as a tutorial on psycho-acoustics, so let us go
back to the basics. I fully agree with remarks that have already
been made by other speakers about the fact that our hearing organ
is, from its origin, a warning system. The requirements of a good
warning system are:

— it should be active day and night,

— it should be omnidirectional and very sensitive,

- it should be able to discriminate between simultaneous

sounds and to localize these sounds as well as possible.

The ear does all these things quite well. It is always ready. Even
when you sleep, it still picks up sounds that maybe will wake you
up. It is omnidirectional. The sensitivity of the hearing organ is
well known. It has an enormous dynamic range of about 120 dB.
The vibration amplitude inside the ear is incredibly small. It is
able, indeed, to discriminate between sounds because it has a filter
system in the form of the basilar membrane, which is capable of
splitting frequency components, and thus sounds. Each of these
sounds can be localized quite accurately by measuring time
differences (especially between sound envelopes), level differences,
and spectral changes in the sounds. In this way the direction from
which the sound is coming is determined. It is important to realize
what kind of sounds such a warning system should react to. These
sounds (wind, water etc.) are always irregular sounds, noise-like,
pulse-like, in general aperiodic. Such sounds always have a
complicated envelope structure, which means that the
determination of time delays between signals is done very
accurately.

We thus have a good warning system. So good that in the period
between the World Wars the Dutch Army experimented in order
to develop a system for the early detection of incoming airplanes.
It came up with something like what you see here in Figure 1 (a+b:
the smaller model of 1932 never went into production):
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Communication by
means of acoustics
came of course at a
later evolutionary
stage. When that
development started,
a system to receive
air vibrations was
already in existence.
But these vibrations
had also to Dbe
produced. And here

Fig.lb - A smaller model

Fig.la - An Dutch Army acoustic
airplane detection system
(see also Fig.1b)

we have a strange physical problem.
If you use air waves for acoustic
communication, you have to set air
into vibration with your muscles.
The problem is simply that the
maximum speed at which we can
move our muscles corresponds to a
frequency of 10-20 Hz, or a wave
length of about 30 meters or more.

There is a physical law that states that for an efficient radiation of
a signal the source dimension should be of the same order of
magnitude as the wave length of the signal. The human body is
thus simply too small for that task. The efficiency of the radiation
would be so low that no true communication system could be
based upon it. This problem was solved in a wonderful way: the

voice was developed.
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The voice is a kind of modulation system. When the vocal chords
are brought into vibration more or less periodic vibrations are
produced with frequencies in the range of 60-300 Hz with a
correspondingly small wave length. Such signals can be radiated
much better than low frequency signals from direct muscle action.
This more or less periodic signal is generated by the vocal chords
and acts as a carrier wave on which information is put by three
simultaneous processes:
- by varying the tension of the vocal chords, the frequency
is changed,
- by changing the energy used to drive the system the
amplitude of the vibration is changed,
- by changing the shape of the vocal tract, the position of
the tongue etc., the wave form is changed.

In technical terms we have a carrier wave of which the amplitude,
the frequency and the spectrum is modulated. Due to the different
types of modulations going on simultaneously, we have a much
more complicated system than the technical modulation used for
radio and TV broadcasts, but there is a correspondence which was
recognized only afterwards. The result is not only an improvement
of the radiation efficiency, but also all other benefits of a system
of modulation such as a better protection against interference.
The price is the need for a demodulator at the receiver end.

The idea that speech (and also music signals) are modulated signals
is now generally accepted, at least in speech research. The
well-known RASTI-index for speech transmission is based on it. It
expresses how well the modulation parameters are preserved
during transmission. A set condition with modulation is that the
carrier frequency should be well above the modulating frequencies.
That explains why a frequency of at least about 20 Hz is required
to hear a tone and why beats (= amplitude modulation) only can be
heard up to 16 Hz. The ear is not capable of following faster beats
as natural modulation is restricted to this upper frequency.

Figure 2 shows a graph showing the strength of the amplitude
modulation in speech as function of the frequency (ranging from
0.2 to about 20 Hz); the maximum modulation is around 4 Hz, the
average frequency at which words are pronounced. Syllables and
other speech elements are found at other places on this scale.
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Fig.2 — Average temporal envelope spectra in terms of the modulation index
for one-minute connected discourse from ten male speakers
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James Tenney: A modulation index, I can’t remember what that is.

ST: It’s the amplitude of the modulating signal. In the mathematical
expression of an AM, i.e. amplitude modulated signal

sin 2nf t(1+m cos 2nf t)]
it is the parameter [m].

In my view we should approach the phenomenon of perception of
music and speech signals as a demodulation process. My proposal
for this introduction is that we follow the sound signals on their
way, from the outside to the inside. That is the normal approach,
but in this way we also will make the transition from a warning
system to a communication system. We shall consider the ear as a
“living microphone system” whereby the emphasis will shift from
“microphone” to “living”.

Look at Figure 3, a well known picture of the hearing organ:
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Fig.3 - Cross section of the human ear - a classical drawing by Max Brodel
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On the outside we have the shell-shaped “pinna” or ear conch and
the ear canal. Some people think the pinna is just an ornament.
This is not true. We now know that the acoustical function of the
pinna is very important and strongly related to the warning
function we discussed already. | mentioned time differences and
level differences. To detect these you need two ears because you
need two signals to be able to tell a difference. But spectral changes
can also be detected with a single receiver, with a single ear. The
pinna is a linear filter with a complicated direction- dependent
frequency response due to the way the resonances are provoked.
The amount of spectral “colouration” thus depends on the direction
of the sound source. We can recognize these changes and interpret
them as directional information, which normally is mainly used to
check elevation, while we use time and level differences to
determine directions on the horizontal plane.

Perhaps you wonder about the title of my talk “Unheard Sounds”.
You haven’t heard anything about that yet. I must say I used a
provocative title like Jim did, but I promise you I will play some of
these sounds. As I wrote in my short summary I will give
examples of sounds not being produced by physical vibrations, and
of physical vibrations not leading to sound impressions.
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We continue our trip to the inside of the ear. There’s the ear canal,
which can be easily physically described by talking about
frequency responses, about sound transmission in a tube - or in a
set of tubes with different areas. Even the ear drum, which we
reach here, can still be considered a microphone membrane.
Determining the acoustic impedance of the ear drum is nowadays
a common diagnostic tool. If something is wrong with your ears it
sometimes can be discovered by measuring how that membrane
reacts to pressure fluctuations.

Then we reach the middle ear section of the ear, with that
wonderful construction of the three small bones or “ossicles” that
form the connection between the ear drum and the oval window,
that is the entrance to the inner ear, to the cochlea. This system
can still be described in more or less physical terms. We know that
the main function of this system is to act as an acoustic impedance
transformer to guide the arriving air vibrations into the fluid that
is contained in the inner ear by functioning as a system of levers.
But there are in the middle ear section not only ossicles - here you
see on the left the hammer or malleus that is normally in contact
with the ear drum, followed by the anvil (incus) and stirrup
(stapes) - but also a few muscles, two in particular: the tensor
tympani and the stapedius. The stapedius has an important
acoustic function: when this muscle contracts, the stirrup changes
its way of vibration and the sensitivity (especially for low
frequencies) is reduced. This has always been interpreted as a
protection mechanism comparable to that of the pupil reflex. That
is only partly correct; we now know that its main task lies
elsewhere. Why should we have a protection mechanism against
an unlikely risk? Our ancestors lived in a very quiet world. Loud
sound levels, like those we have to endure continuously nowadays,
occurred very rarely. Perhaps now and then a loud thunderstorm
or the sound of the sea. But really loud sounds were very
exceptional. And it is not likely that evolution would provide us
with a protection system against something that very rarely
happens. We now know that the muscle connected with the stapes
has a main function of improving acoustic communication. By
contracting, this muscle attenuates the low frequencies, especially
of your own voice, and reduces in this way the masking effect on
higher frequency components (I will speak about masking in a few
minutes).

Tempelaars: Unheard Sounds 7



So it is actually anti-masking that is taking place here. And the
best proof of that is that the stapedius action starts before you
start to speak, while normally a reflex follows the stimulus. In this
way the sensitivity to your own voice is reduced. This is already
clearly the function of a living organism, it is a feedback system
taking a path via the brain. And it is no longer valid to describe it
in terms of a passive microphone-like system.

[ should like to discuss another subject in relationship with the
middle ear: combination tones. We have talked about that
phenomenon a few times during the past days. The reason to
mention it here is that Helmholtz assumed the combination tones
(as they are named nowadays) to have their origin in the middle
ear section. We know that this is not true - although the exact
origin of the combination tones is unknown.

[ think everybody knows the most common manifestation of a
combination tone, the difference tone. We talked about it yesterday.
Let us now listen to the first sound example. You will hear two
signals, one from the left speaker and one from the right. The tape
has to be played loud, please accept that - I will make it as short
as possible. You will first hear a random series of high pitches on
one channel, then another series of high pitches (a short one) on
the other channel. And then both at the same time.

(Tape example)

Its not surprising that these difference tones were discovered by
musicians. They are sometimes called “Tartini-tones” and it is
indeed likely that Tartini was one of the first to have heard and
studied them. Helmholtz was the first to explain them by assuming
a nonlinear relationship between the acoustic input signal [x] and
the reaction of the hearing organ [yl:

y=aXx tax*+tagx3d+. ...

When the input signal x consists of the sum of two frequency
components, you will find of course the same two components in
the output signal, but the output also contains all kinds of sums
and differences of (multiples of) the two frequencies. The theory
predicts that the squared term generates the sum and difference
tone and the cubic term frequencies like 2fzf, and f;*2f,.
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The theory thus predicts which frequency components will be
found in the signal. Experimental verification shows that the theory
is right in the sense that only combination tones with frequencies
below those of the primary tones are found.

This can be easily explained by assuming that the higher
components are masked by the primary tones. The fact that only
difference tones are found is in itself not in contradiction with this
theory. Helmholtz himself by the way claimed to have heard the
sum tones as well. The problem, however, is that the theory not
only predicts which frequency components you will hear, but also
what their amplitude is. And here the theory fails. If you take the
prediction from this theory, and you measure the strength of the
cubic combination tone you will find complete disagreement. Once
more we have to leave the simple physical model. We have to
assume a different kind of non-linearity to account for this fact.

How important are combination tones? Very important, because
several properties of the ear like certain kinds of phase sensitivity
can be explained on the basis of difference tones. Although we
don’t hear them as clearly as in the sound example, they are
always present and they always play a certain role. Perhaps also in
music theory. In his Unterweisung im Tonsatz, Hindemith based
his theory of harmony on the fact that each time that two tones
sound together, a third tone is introduced. It is strange that he
used only the quadratic difference tone and not the cubic one.

Dimitrios Lekkas: There are two of them aren’t there? There is also
a 2f5-f,.

ST: Yes, but this one’s much stronger. I think the 2f,-f; is above
the primary tone. So you won'’t hear it; it is masked.

Another way to show that the physical description is no longer
valid is by measuring the strength of the distortion products. Like
with an amplifier the quality of the system can be expressed as a
distortion figure. When you calculate this distortion figure from
traditional measurements, you come up with something like 207%.
Such a high value is utterly unacceptable in any electro-acoustic
device. How could it be acceptable in the human ear? The point is
that common measuring methods lead to wrong results. So the
figure itself should be questioned
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Let us continue our trip, arriving at the inner ear, at the spiral-
shaped cochlea. An important part of this is the basilar membrane
that divides the cochlea (which for simplicity can be imagined as a
straight tube) into two parts. On the basilar membrane rests the
organ of Corti in which hair cells are located that play a central
role in the mechanism converting vibrations into nerve pulses.

This part of the ear is where the frequency selective mechanism is
located. Helmholtz tried to explain our ability to discriminate
between simultaneous sounds by assuming the basilar membrane
to consist of little fibres, resonators tuned to different frequencies.
This hypothesis was rejected by Georg von BUkUsy who gave the
correct description, leading once more to a fascinating physical
problem.

Trying to describe mathematically what happens when a narrow,
tapered membrane in a fluid is subjected to vibrations is not easy.
Von BUk(sy not only gave a theoretical analysis, he also confirmed
it by observing with a microscope the vibrations in the ears of
deceased people. What he saw was a pattern that can best be
described as a “running wave”. Due to differences in elasticity and
dimensions the different parts of the basilar membrane have a
delayed reaction to the pressure. The delay increases with distance
to the pressure source, the oval window. This means that when
the system is driven with a sine wave, we get a running wave
which sweeps up to a maximum and then dies out very rapidly.
The place of maximum deviation depends on the frequency of the
sine wave. The higher the frequency, the more the maximum
moves towards the oval window. The up-and-down motion of the
basilar membrane leads to a to-and-fro movement of the hairs
protruding from the hair cells. When this movement exceeds a
certain threshold the nerve is triggered. This process is an
all-or-none process, which means that when it happens, it
happens completely. The fact that triggering takes place at a
certain moment and then takes place completely, explains the
mechanism of masking. Each tone generates an activity or
excitation pattern along the basilar membrane with a strong
asymmetrical shape. If there are two tones, a strong low tone and
a weak high tone, the excitation pattern of the weak tone “drowns”
within that of the strong one. No extra nerve activity is initiated,
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the weak tone is not heard. I have a sound example in which the
“masker” is a noise band (to avoid sine tone interaction) and the
masked tone is a sine tone that sweeps from low to high and back.
When the sine tone approaches the noise band, you will hear it
disappear. You will also hear that masking is far more pronounced
towards the higher frequencies.

(Tape example)

This behaviour can be measured, giving the well known masking
curve with its characteristic asymmetrical shape. Masking is an
important phenomenon with consequences in communication
processes in speech and music. New digital recording techniques
employ it: by not storing those frequency components which are
inaudible due to masking, the amount of information can be
reduced by a factor of four to five. Furthermore, the masking
curve gives us an image of the excitation pattern.

This pattern can also be gained by a non-simultaneous technique
(avoiding interaction between the masking and the masked tone)
called the pulsation threshold technique. After the combination
tone and the masked tone this will be the third example of an
unheard sound. It is important, for it shows that under certain
circumstances the ear can “fill in” a sound that is not physically
present. You will hear two alternating tones, a strong and a weak
one. If the weak tone is in the region of the strong one and sounds
simultaneously, it is inaudible due to masking. The hearing organ
then cannot decide whether the weak tone is there or not. The fact
that it is there before and after the strong tone makes it likely that
it is also present during the strong tone. It is filled in and we hear
a continuous tone, instead of an interrupted one.

(Tape example)

This is a first demonstration of the ability of our ears to restore a
signal that contextually should be there, but can’t be heard. It is as
such the first proof of a much higher order of organization. We
should consider the hearing organ not simply as a microphone, but
as an information processing system with unexpected qualities like
just demonstrated. When our ear receives a complex tone, we get
a complex vibration, a series of (partly overlapping) excitation
patterns, from which all information about the tone is extracted.
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So the peripheral part of the hearing organ is still mainly
determined by its task as a warning system. When we consider
the central part of the system we recognize the specialization for
dealing with sounds of speech and music. From the complicated
excitation pattern with its peaks our information processing unit
extracts the pitch, loudness and timbre information. This process
is reasonably well understood. It is possible on the basis of the
physical properties of the signal function to predict what pitch,
what timbre and what loudness will be heard.

Loudness is derived from the total neural activity. It is the total
number of neural pulses reaching the brain, that determines the
perceived loudness. By integrating the total excitation pattern, the
perceived loudness can be predicted.

Timbre is derived from the global shape of the excitation pattern,
the global spectral envelope. Timbre perception is thus based upon
a pattern recognition mechanism. In our memory a number of
timbre patterns is stored, and we can recognize an incoming
pattern by comparing it with the stored patterns. In this way we
can recognize vowels and musical sounds.

The term “pattern recognition” also applies to the mechanism of
pitch perception. When we listen to two tones, we have two
intermingled patterns of peaks. The ear is capable to recognize the
two individual patterns and to separate them in such a way that
we do hear two tones, not two complexes of harmonics. A simple
physical filter without pattern recognition capabilities can never
achieve this.

As soon as pattern recognition is involved it is always attractive to
try to fool the system, to distort patterns and to try to find out
how far you can go with that. This can be done with timbres, e.g.
by constructing timbres that change from one class to another. It
is very interesting to follow where the transition takes place. It can
also be done with pitches by trying to find out the minimum
number of harmonics required to hear the correct pitch. The ear
always tries to fit the series of peaks in the excitation pattern to a
harmonic series. When it succeeds, the pitch is determined by that
harmonic series.
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It has been found that you can go very far in making the ear try
to fit a pattern to a harmonic series. Normally a few harmonics are
sufficient to hear a pitch. Even just one harmonic in one ear, and
another one in the other ear. Under bad signal-to-noise conditions
(that make it easier for the perception system to “fill in” missing
components on the basis of contextual evidence) even a single
harmonic can be enough. My last tape example, which I made a
number of years ago, still surprises me. You will hear a simple
melody eight times, first twice in the normal way. Then strongly
filtered with a lot of noise - even though most harmonics are now
masked and filtered out, we have no problem in following the pitch.
Then you will hear it the same way again, but with one tone
changed - and I ask you to find out which one. Finally I will play it
still with the changed tone but without noise or filtering, in which
case the change will be very obvoius.

(Tape example)

In this example I replaced a complex tone by just one harmonic; it
was possible to “hear” the low corresponding fundamental on the
basis of just this one tone. The hearing organ has astonishing
capabilities to restore mutilated or missing information. This
justifies the qualification “information processing system” The
same mechanism certainly plays an important role when we listen
to orchestral music where the interference is caused by other
musical voices.

James Tenney: Does it work that way if you present just the noisy
distorted version, in other words without hearing the tune over and
over several times?

ST: Just the isolated tones? I've never tried. I shall try that but I
don’t think it will work. There is no reason why it should.
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Wednesday 15:00
Wouter Swets

Shifting processes in the metric and modal forms of Balkan and
Near Fastern Music.

This text gives a general survey of the subject of my symposium
paper of 16 December 1992 which could not be treated completely
within the available time. Metric and modal shifting processes are
especially interesting in music of those regions of the world where
many different meters and modes are used alongside each other in
folk practice as well as in traditional classical performances. In
this respect the Balkans and the Near East show an exceptional
musical richness. The following text will give you an idea of the
different ways in which I am involved in questions rising from the
measuring of time values and tone pitches as far as concerns the
mentioned shifting processes such as they may appear from time
to time, place to place, performance to performance or even
within a performance. When I delivered my paper, performances
and notations were supplied to the symposium participants. Some
of the latter will be discussed now more fully and in detail.

Metric and modal shifting processes are often the result of
creative contributions of members of a society who try to
preserve and develop consciously or unconsciously the musical
heritage of their culture. Nevertheless misunderstandings in the
world of oral tradition appearing among less gifted local musicians
and music lovers and even among collecting and transcribing
musicologists may have a very damaging effect on the possibility
of future survival of the musical culture concerned. In cases
where the damage has already been done, the reconstruction of
corrupted performances and notations becomes therefore very
important. In this respect I offer a folksong (to be found in a
collection of folksongs of the Balkan Turks!) which I reconstructed,
a very interesting case, because apparently both its performance,
collected and recorded by M. Ramiz, and his transcription of it are
corrupted, but can nevertheless be reconstructed.
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Ex.1 gives the song as transcribed by M. Ramiz; Ex.2 gives my
reconstruction of it (1) and by way of comparison my final
arrangement as performed by my ensemble Calgija (11). On
analysing the transcription it seems unavoidable to conclude that
Ramiz himself must have felt either that his transcription of the
song in 4/4 meter was wrong, or that his recorded version of it
was hopelessly and irreparably corrupt. Most probably his
informant was a singer accompanying himself on a plucked
instrument (saz or sharki) but a wrong accompaniment on
percussion in 4/4, though improbable, cannot be excluded totally: in
[stanbul I once heard two non-professional gypsy musicians
performing a well known classical Turkish piece in 10/8 meter?
(3+2+2+3). The violinist played in 10/8 but the percussionist
accompanied him persistently in 4/4, so their performance became
an unexpected polymetric happening. Ramiz’ transcription in 4/4
results in a totally idiotic syncopated placing of the word syllables.
The placing alone of the words mi bulundum - which appear twice
in the first stanza, take an identical position in verse lines 4 and 6
and moreover cover both times the identical musical phrase - is
different in relation to the metric frame. Ramiz must have seen
this but was unable to find a metric alternative, most probably due
to a lack of knowledge of syllable placing in the case of anacruses®.
This lack was apparently shared by his informant musician.

For an explanation, let us turn to my reconstruction of the song in
7/4 meter. The song’s build becomes as surveyable as the placing
of the verse lines and syllables are logical. The song consists of
three musical five-bar phrases ABB’ each covering two verse lines
of two and three bars, respectively. Each stanza consists of 4+2
verse lines with rhyme scheme [aaaxbx]. The verse lines with [ax]
and [bx] rhyme cover musical phrase B and its modified repetition
B’. In the song a pair of verse lines of eight syllables each is divided
into four groups of four syllables which are distributed over the
the musical five-bar phrase so: (4+4)+[4+(3+]. Each group of two
verse lines is separated from the next one by a short dance-like
instrumental interjection which is contained in the fifth bar. Only
at the end of the song is this interlude omitted. The separation
between the two verse lines of each group is effected by the
insertion of the word aman, an emotional exclamation, at the end
of the second bar of each musical phrase. Usually each group of
four syllables gets the beat values 1+2+2+2 or 2+1+2+2.
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Ex.1- Old Turkish urban folk song from Skopje, transcribed and arranged by

M.Ramiz
SADIRVAN OLSAM
HAH%ﬂ—rrS:—P_'T*F'_ i e > —]
[R5 E— — — —— i 1
o/ e e - |
Sa- dir- van ol- sam a- ka- yim a- man da-yim

. . . ‘
i-ki has- ret  a-re- sin- de a-man ya-na-
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cak ben mi bu- lun- dum
[ Sadirvan olsam akayim aman II.  Bak su felegin oynuna aman
Dayim yollara bakayim Ak giil daldirmug koynuna
Sinem dayleri agayim aman Menekse takmis boynuna aman
Asacak ben mi bulundum Korkacak ben mi bulundum
[ki hasret aresinde aman Esim dostun aresinde aman
Yanacak ben mi bulundum Yanacak ben mi bulundum
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Ex.2 - Reconstruction (1) of song on left and arrangement for performance (11,
both by W. Swets, shown separately only where divergent
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There are exceptions to this:

(1) in the second bar of each phrase where aman is inserted the
beat structure becomes 2+1 (or 1+2)++3+[aman:14+2,

(2) in bars 4 and 5 it becomes 1+2 (or 2+1)+4+3+[instrumental:14,

(3) in the first bar of phrases B and B" where the first two beats
hold the end of the previous instrumental interlude thus
creating a vocal anacrusis in which the time value of the two
first syllables of the group are squeezed to the value of a half
beat each, thus: 2[instrumentall+3+2+2+2.

Had Ramiz recognised the shortening of the first two syllables as

pointing to an anacrusis of 5 beats he could have discovered the

7/4 meter as fitting the song. But besides transcribers, also the

local performers of folksongs often have difficulties with

anacruses, more especially when they sing solo without
instrumental accompaniment or when they themselves accompany
their singing.

For instance in Balkan and Turkish folksongs in 9/8 meter with
pattern 2+2+2+3 beats at the beginning of a verse line anacruses of
7 beats (2+2+3) often appear. The four syllable setting 2+2+2+3 then
becomes 1+1+2+3. Now solo performing village musicians sometimes
tend to “forget” the previous 2 beats as a rest or instrumental
filling, with the result that in their 9/8 meter song performances
there suddenly appear isolated bars of 7/8. Even when such
musicians do have some notion of a “break” which should precede
anacruses they usually give it an arbitrary duration, for instance
one or three beats instead of two. This can happen in this way
because at such breaks the singer cannot avail of metrically
abstract feeling and becomes disoriented as soon as his concrete
metric feeling is not reflected in the portioning off of time in sung
syllables or dance-steps. In a positive sense such arbitrary breaks
might even give the musician a feeling of ad libitum freedom.
During one of my field recording trips a Macedonian singer once
asked me ‘How shall I sing my song for you, as a dance song or
“just free”?’ As a dance song it had a 716 (3+2+2) meter, whereas
as a “free” song it showed a far more complicated, apparently
locally undanceable 19/16! Of course in the Balkans and Anatolia
there are many really free, i.e. ametric songs in which the sung
words and verses structure the rubato melody.
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To end this discourse on anacrusis practice it should however be
stressed that the better professional Turkish and Balkan folk
musicians are and the more they follow the example of Turkish art
musicians the better they will treat anacruses. They are very
popular especially at the beginning of vocal-instrumental songs,
because participants do not have to start together. The
percussionist usually plays the first beat. In any case one can now
understand why the recording of our Turkish song as rendered by
Ramiz shows a metrical performance with free breaks even
without having actually heard the original. Ramiz appears to be a
very reliable transcriber as far as the duration of the notes is
concerned. Though he was aware of the nonsensical result of his
transcription he never was driven to changing the note values and
the place of the syllables according to what the singer must have
“meant” in order to fit the song better to the supposed 4/4 meter.
This is proved by the fact that when I fitted the song to the true
7/4 (with the exception of two places), | nowhere had to change or
“adapt” a note duration - and just these two places marked “x” in
bars 6 and 10, where I had to add a quaver, are situated in the
above mentioned free break in relation to a following anacrusis. I
did this, of course, to maintain the 74 meter during the breaks.

Qualitatively the performance of the song on tape of Mr Ramiz
cannot be described else than as mediocre and corrupted. I have
reversed the durations of the two first notes of the song as
transcribed by Ramiz and performed by his informant; from a
metric point of view there was no need for this, but this was
recommended by the mode of the song, makam Uzzal Thus the [e]
is emphasized as required in this makam, which has the fifth as
dominant. The marked [c#] in bar 14 was changed from the original
[b%] to improve the melodic flow. As many other so-called Rumeli
tiirkiileri, folksongs of the Balkan Turks, this song too shows by its
melodic shape a pretty strong approach to the classical makam
conception of traditional Turkish art music. The key signature of
the song has been adopted from that music: the crossed flat [#]
lowers the [b] by a Pythagorean limma of 90 cents, the sharp
raises the [c] according to the Turkish system by a limma, too. All
other notes without accidentals represent the Pythagorean diatonic
scale. Consequently the [c#] of 384 cents sounds just a little lower
than our equal-tempered one of 400 cents while the [bb] of 114
cents is somewhat higher than the equal-tempered 100 cents.
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According to the transcription of Ramiz the performance of the
song on tape shows typical oriental melodic embellishments, which
are, however, at some places too abundant and at other ones too
rare. That is why | arranged the song by changing some
embellishments in order to be performed thus by my ensemble
Calgija. The music example gives an opportunity to compare my
reconstruction with my arrangement of the song. In my
reconstruction one may see, marked with an [—x—], a melodic
fragment of the song in bar Il which is not present in the tape
recording of Ramiz. In his transcribed version only after the words
iki hasret the melody to which verse lines 5 and 6 are sung is a
modified repetition of that of verse lines 3 and 4 (compare Ramiz
bars 11-16 with bars 18-24). Moreover the “new” melodic beginning
covering the words iki hasret (bars 16 and 17) is in contrast with
the “old” one on the syllables sinem dayle (bars 10 and 11),
connected to the repeated melodic section by a totally ridiculous
anti-traditional jump of a minor seventh. This melodic fragment
clearly belongs to the preceding and not to the following melodic
section. Besides, the expected instrumental interjection at the end
of verse line 4 is lacking in the version transcribed by Ramiz.

After all this it is not difficult to conclude that the melodic
fragment covering the words iki hasret should be reserved for the
instrumental interjection at the end of verse line 4 and further
connected with the repetition in bar Il covering the mentioned
words of the melodic fragment to which in bar 6 the syllables
sinem dayle were sung, modified similar to the way the continued
melody in bars 12-14 shows a modified repetition of its counterpart
in bars 7-9. This I did in my reconstruction, and as a result the
three phrases of the song get an equal length of five 74 bars each
(see bars 6, 10 and 11 of my reconstruction) and moreover a
near-identical placing of the syllables. Of course after verse line 6
an instrumental interjection is needed as well when the song is
continued with the second stanza but it should, according to
custom, be omitted at the end of the song. Because this
interjection was absent in the performance transcribed by Ramiz I
simply had to add it myself in the traditional style. The 74 meter is
not a frequent feature in folksongs of the Balkan Turks and may
possibly be considered as a local Macedonian or Albanian influence,
not improbable at all in the Macedonian city of Skopje — the home
of this song - which houses a considerable Albanian minority.
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So much for this reconstruction. I have made a large number of
such reconstructions in the course of my life. By giving this
special example I wanted to show how even far from ideal musical
performances and in some respect wrong transcriptions can
contribute to successful repair work. Therefore transcribing of
folks songs and orally transmitted traditional art music should be
continued wherever it exists and be undertaken wherever it is not
yet present. There lie the hearts of musicians serving an
ethnomusicology unenslaved by anthropology, thus not becoming a
breeding place of articles producing articles written by musically
less involved, less gifted scientists describing thoughts about music
they understand more often by reading or talking words and by
watching musicians perform than by analytically listening to the
music itself. Where necessarily locally adapted, our Western
musical notation offers probably the best equipment for excellent
prescriptive transcriptions much more detailed as concerns the
embellishments than the schematic, sloppily printed one of Ramiz
in which even ties were forgotten (but included here).

Both studying music from transcriptions and teaching by or
learning from an Indian guru have their limits. But undoubtedly
recordings of good raga performances and their transcriptions,
combined with methodical exercises in oral tradition and - as far
as they exist - good instruction books on Indian musical practice
could speed up the learning process considerably, compared with
the many years spent with a guru for which one may have no
time. Before I made my first fieldwork trip to Yugoslav Macedonia
in 1961, 1 had by way of preparation and in order to develop a
critical musical taste already collected many recordings, studied
thoroughly many folk-song and dance-tune collections of the
region, and learned the language in a basic form. I have always
persisted without any regret in this method which enabled me to
discover really good folk and art musicians. Our first music
examples show how important the build of verse lines and the
grouping of words and syllables are for the shifting process of
correcting a wrong meter into a right one. But they are even more
important in so far as they set out the course of factual and
possible but as yet undiscovered metric shifting in different
versions of one song with the same text and the same melody.
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If for example a song exists in meters A, B and C, and a second
song with the same verse type in meters C, D and E, and many
other songs in meters A, B, C, D and E sharing the same verse type
and syllable grouping show an identical syllable placing in the
melody, it is safe to say that this verse type creates a path of
shifting musical meters in which the meters A, B, C, D and E each
occupy a special position. Thus for example the eight-syllable
verse grouped as 4+4 can be found in Macedonia and Bulgaria in

4/4  (HH+D+I+1+1+D), Vs (2+2+2+3)+(2+2+2+3),
5/8  (1+1+1+2)+(1+1+1+2), /g (2+2+3+4)+(2+2+3+4),
/8 (2+2+1+2)+(2+2+1+2), /g (3+3+2+3)+(3+3+2+3),

13/16  (4+4+2+3)+(4+4+2+3),  12/8  (1+1+1+2)+(2+2+1+2) etc.,
whereas the eight-syllable verse with subdivision 5+3 can be met
in the same countries for instance in

8/8  (I+1+1+1+D+(1+1+1), 4/4  (BH1+E+1+DH(1+1+2),

5/16  (2+2+142+3)+(2+3+5), 716 (3+2+2+3+4)+(3+4+7),

/8 (2+2+1+2+2)+(2+3+4), 8 (Q+1+1+2+1)+(2+2+3),

/g (3+2+42+2+2)+(3+4+4), 12/ (3+2+2+3+2)+(3+4+5),

16/g  (2+2+142+2)+(2+1+4), 22/16 (2+2+2+3+4)+(2+3+4) etc.

In order to get an idea of how such metric shifting processes
actually feel in speech one may try them out on two English
sentences: “Never wake up sleeping persons” (4+4) and “Grandfather
used to sleep so long” (5+3 syllables). By doing so it will become
moreover evident that the English language - as many others -
fits complicated meters like the above mentioned very well. The
duration of the syllables can apparently be prolonged or shortened
without a damaging effect on the diction if only the fixed grouping
of the syllables as marked by the accented ones is respected.
However in Turkish traditional art music which knows some
seventy different musical meters called usul, the setting of poetry
to music is decided by the difference between short and long
syllables. In Turkish-Ottoman poetry the verse lines show
predominantly fixed prosodic types. As in the above mentioned folk
music it happens in Turkish traditional art music that the same
text is set to different usul, but at the same time to different
compositions. The word usul covers more than our Western
concept of musical meter. It is a schematic rhythmic periodic type
in which each period shows the same fixed order of time segments
of different duration, limited by heavy and/or light beats.
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An usul can vary from 2 short to 88 long time units; its concept
mediates between a musical meter (short usul) or a group of
musical meters (long usul) on the one hand and a rhythm worked
out in detail on the other as performed during a composition or
melodic improvisation. Both composed melody and sung prosody
have to manifest the usul in their macro- and micro proportions,
the former by means of the melodic course as prescribed by the
makam (mode), the latter by way of syllable placing in the music.

There are many prosodic types, all of which the Turks adopted
from classical Arab poetry. Each type consists of a fixed number of
selected prosodic meters in a fixed order. Each meter consists of
two to five syllables, long and short, which get a fixed position and
order. When in Turkish traditional art music a poem is set to
music, it is the prosodic type of its verse lines which determines
the musical meters out of which the composer has to make his
choice. Each prosodic type can be set to one or more musical
meters and vice versa, each musical meter can be used for one or
more prosodical types. Thus many combinations are possible, but
limitations do exist: a prosodic type cannot be (or till now has not
been) set in every musical meter and usually has a more or less
fixed setting in a chosen musical meter. Vice versa, a musical
meter cannot use (or has till now not used) all prosodic types. In
the musical settings of the prosodic types the short syllables get a
recognizable, usually strictly respected short duration while the
duration of the long syllables may vary from “shortish” (i.e. longer
than short) to long or very long. A more detailed article about
prosody in traditional Turkish art music is in preparation.

Returning to folk music, one special type of metric shifting should
still be mentioned, i.e. the creation of a “new” meter because of the
misunderstanding of an anacrusis. For example in songs with a 7/8
(2+2+3) or 9/8 meter (2+2+2+3) and with eight-syllable verses
grouped in 4+4 syllables in which every odd-numbered bar is an
anacrusis one gets for each pair of bars the syllable placing

(a) in 7/8: (2[restl+1+1+1+2)+(2+2+1+2) and

(b) in 9/8: (2[restl+1+1+2+3)+(2+2+2+3),
If in this case singers not understanding anacruses omit the rests,
they unconsciously create two new metres, as has in fact
happened:

12/ (2+3)+(2+2+3) and 16/8 (2+2+3)+(2+2+2+3).
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Generally spoken, shifting processes are guided by dance steps in
instrumentally performed dance music in a similar way to the
syllable placing in songs, but indirectly here too the syllable
placing often forms the background as the example shows, because
many dance tunes are instrumental performances of songs of
which everybody knows the words. So in most Balkan and
Anatolian dances there is a close relationship between text setting
and dance steps.

Shifting processes within one piece of music where the same
melody later gets a different meter are usually more isolated
phenomena, occurring for example in Transylvania, where for
instance the slow part of a dance may be performed in 19/16
(2+2+3+3) and the fast part in 4/8 or 8/16 (2+2+2+2) and also in
Eastern Turkey where some dances may start in a slow 4/4 meter
and finish in a fast 6/8, 6/16 (2+1+1+2) or 19/16 meter (3+2+2+3).
However as an extremely well developed tricky heroic attribute of
male dancing, such shifting processes are a characteristic and rich
phenomenon in the Western part of Macedonia of former
Yugoslavia and Greece. Dances of this type are characterized by
the fact that they begin slowly and gradually build up to a speedy
conclusion.

There are two possible ways to achieve this acceleration: (a) the
meter of the slow beginning is maintained until the fast conclusion
or (b) the initial meter, seemingly bred from an ametric chaos,
changes by gradually diminishing the number of time units of the
metric pattern - which in itself gives an accelerating effect and is
used alongside the actual acceleration by shortening the above
mentioned time units - only to be stabilized at the fast conclusion.
Because the technique of metric shortening is a matter of oral
tradition, which includes at least partly unconscious proceedings,
local folk musicians using this technique cannot explain what they
are actually doing in symbols adopted from occidental musical
notation. Moreover when and how exactly the meter of a
Macedonian dance is shortened differs from time to time and place
to place and depends mainly on the spontaneous interaction
between musicians and dancers where both may take the
initiative. Professional analysis by experienced ethnomusicologists
is in this case indispensable.
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It is my personal discovery that Macedonian heroic male dances
which seem to develop from a chaotic rubato beginning to a metric
conclusion often employ a consequent structuring of time which
may be very complicated but is in any case remote from the
voluntary character of a rubato. This may be seen in Ex.3 (next
page), showing my transcription of the Macedonian folk dance
melody Berance, performed on two shawms (zurna) and a large
drum (tapan) and as recorded on a Yugoslav LP, Radiotelevizija
Beograd (RTB - LP 1360 side B, track 4) and containing a gradual
shrinking from 22/16 to 18/16 meter: 5+3+6+4+4 = 5+3+5+4+4 —~
A+3+5+4+4 = 4+3+5+4+3 = 4+3+4+4+3 (see bars 1, 19, 23, 27 and 31). A
further shrinking to 17/16 (4+3+3+4+3) is conceivable but does not
take place here. Ex.4 (three pages on) shows a Slavic Macedonian
dance from Greece named Posednica to which I myself applied -
with good reason - the metric shrinking procedure as may be
heard in a performance by my ensemble Calgija on a recently
released CD (PAN 2007 CD, track 20). The main reason is that
several other dances of the region sometimes show metric
shrinking and sometimes do not, while furthermore phrases A, B
and D of the main melody of Posednica show a close relationship
with the melody of Berance. For more detailed information about
shrinking meters see the booklet of the mentioned CD; for
recorded shifting processes see an article [ wrote in 1988%

As with metric shifting processes, modal shifts also appear from
time to time and place to place. For example in the Balkan and
Near Eastern modes using the scale [d e- f g a b-/bb ¢ d] (in
Turkey transposed up to [a b- ¢ d e fé-/f g al), the lowering of the
[e-] and [b-] in the Balkans and in Western Turkey is generally
spoken less than in Eastern Turkey, Egypt, Syria, Iraq and finally
in Iran where it is most prominent. For centuries there has been
much dispute among theorists and musicians about the exact and
“right” pitches. Intervals to which one is locally accustomed seem
to settle the matter. On the other hand, traditional pitches must be
as precisely reproduceable and reperformable as possible in a
musical culture, for which theory can give a useful handhold.
Moreover if a musical culture, as for example that of Turkish
traditional art music, avails of more than thirty pitches used in
practice within the central octave and all these pitches have a
meaningful function in the development of melody, it is far less
important if one of the intervals possible within these pitches has
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Ex.3 - Shrinking metres: a Macedonian Folk Dance, transcribed by W. Swets
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Ex.4 - More metric shrinking: a Slavic Macedonian song from Greece
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a frequency ratio of 2048:2187 (114 cents) instead of 15:16 (112 cents) -
only a very slight difference - than when Westernization in the
Balkans forces Turkish melodies into the frame of the only twelve
tones of our equal temperament and at the same time annihilates
intervals used in the local and regional folk music of the Balkan
countries.

For the continuation of Near Eastern musical culture the growing
popularity of equal-tempered occidental musical instruments like
the accordeon and the conventional synthesizer constitutes a great
danger. On the other hand even for well trained Western singers
and performers of a fretless string instrument like the violin, who
are fans of Near Eastern music, it is nearly impossible to get a
hold on its intervals and to develop a reliable self-control for a
proper intonation without years of previous analytical listening to
recordings of that music and learning to recognize its modes,
unless they are able and have time to study on location. Moreover,
even performing on such instruments like the fretted Turkish
tanbur and the string-retunable Turkish kanun which have all
needed Turkish intervals as “preset” tones (provided of course that
they are tuned well) is not something which can be learned soon
and easily. The Japanese firm Yamaha has built a playable
synthesizer “Arabic style” which combines in the octave ten
equal-tempered tones with an [e] and a [b] which can - only
simultaneously - be lowered ad libitum. Such a device is hardly
workable for the performance of very simple oriental popular and
folk-tunes and not at all sufficient for a good performance of
refined Turkish and Arabian art music. The only synthesizers
which offer conditions for programming microtunings, enabling us
to perform Turkish, Arabic and Persian art music is the Yamaha
DX7-11 and the module Yamaha TX802 in combination for example
with the Yamaha synthesizer DS55°

Thanks to the possibility of combining several microtunings one
can produce - by strictly monophonic playing on this synthesizer -
the double-stop bowing technique of the kemenCe or Pondiaki Iyra,
a fiddle of the Eastern Black Sea region. This technique, difficult for
fiddlers, is relatively easy on the synthesizer as demonstrated
during the symposium when I accompanied the Dutch singer Roel
Sluis in a Pontic Greek folk song.

18 The Ratio Symposium



During recent years I have developed several tuning systems. In
order to make them functional I had not only to take care of the
presence of all the pitches needed, but also to take into account the
modal theory of oriental makams and its application in the
performance of compositions and improvisation, in short,
instrumental behaviour in oriental music. | designed the mentioned
tuning systems in order (a) to provide the occidental music student
with an easy way to get systematically acquainted with and
accustomed to all Near-Eastern pitches and intervals, (b) to
provide him at the same time with an instrument of which the
monophonic use, though here and there very uncommon, strange
and at first seemingly illogical, poses little difficulty as far as
concerns virtuosity, (c) to supply an example to oriental musicians
who destroy their own traditional musical culture with their
equal-tempered Western instruments and (d) to add where
possible, meaningful and desirable extra instrumental timbres to
the already existing beautiful timbres of traditional oriental
instruments. The DS55° ranges five octaves from [cl] to [c6l,
whereby [a3] has a frequency of 440 Hertz. By means of the TX802
all 61 keys of the DS55 can be tuned individually to any desired
pitch via microtuning in micro-units of a 1024th of an octave
(1171875 cents). A designed tuning system of keys can be shifted as
a whole to any desired pitch via transposition in half-tones and
mastertuning in micro-units. This is very important because in
this way the performer does not need to effect the transposition
himself and does not need to add extra pitches to the tonal system
he has designed in order to make transposition possible.

All tuning systems which I designed - theoretical and practical -
have in common that the keyboard is divided into three sections.
The theoretical systems allow playing and modulating to all
makams but have more auxiliary keys and a smaller main section
which is, however, sufficient for strictly monophonic playing. Some
of the makams have a more peculiar fingering. The practical
tuning systems are oriented towards special makams and make
possible local modulations from these makams to other ones but do
not allow playing in all makams. They have however a wider main
section in which playing heterophonically in octaves is possible.
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While keeping a tuning system intact it is possible to move tones
from auxiliary keys to keys of the main section and to store the
replaced tones of the middle section in the auxiliary keys
concerned in order to facilitate the playing in a makam with a
difficult fingering. But one should keep in mind that when one
performs a makam in a thus adapted key setting, playing in
another formerly easy makam now becomes more difficult. Also
while keeping a tuning system intact it is possible to change in
detail the tone frequency of the present and needed pitches
according to some theory or to one’s own taste. Thus my tuning
systems do not interfere in the discussion about “right” or “wrong”
intervals, but simply give a frame in which the desired number of
tones within the octave get a placing which enables their
maximally comfortable practical use in performance. In any case
many modal shifting processes have now been made comparably
audible by means of these tuning systems.

Metric and modal shifting processes have also taken place during
the long period between antiquity and modern times. Nowadays we
hear so-called Gregorian Plainchant of the Roman Catholic Church
performed in equal temperament which certainly did not exist in
antiquity. Christian Plainchant had its cradle of course in the Near
East. Though composing of new sacred music went on during the
first thousand years after Christ and much of what we now know
of Gregorian chant stems from after the year 800, it is clear that
since the beginnings of Christianity a need was felt for preserving
the “identity”, the old style of Christian singing, the more so,
because of its function in validating the celebration of a mass. So
there is, in my opinion, nothing strange in the fact that in many
Gregorian songs the melodic course is much related to that of
oriental makams. A characteristic occidental type of melodic
architecture only came to existence when polyphony, homophony
and harmony became deeply rooted in European music. At that
time the European tonal systems also emerged. If, however, the
intervals of oriental makams are applied to Gregorian chant -
Byzantine Greek ecclesiastical song still preserves similar
intervals — depending on its melodic course and its final tone both
Turks and Arabs will immediately recognize that chant if so
performed as related to their own music. This certainly would not
be the case with a typical European song like Silent Night.
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Ex.5 - A Liber Usualis hymn setin 7/8 and quasi in makam Usgak by W. Swets
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Ex.5 shows an ancient hymn O quam glorifica in the second
ecclesiastical mode (Liber Usualis p. 1864) notated with a major
second lowered by two commas’ as if it were in the Turkish
makam Ussak (pronounced “ush-shak”) and in 7/8 meter as it was
performed during the symposium. The Greek scholar
Thrasyboulos Georgiades has very convincingly made clear that
the classical hexameters of Homer must have been sung in a
meter of seven beats (3+2+2). The Greek theorist Aristoxenos
described a special verse meter “long, short, short” with time
relation 3:2:2, named alogos pous, six of which were arranged to
form a Homeric hexameter of six bars of ¥/8. This meter must
have been very popular because elsewhere it was called kyklios
alogos, meaning alogos of the circle dance. Georgiades states that
nowadays in the region of Greece which has remained most purely
Greek, viz. the Peloponesian peninsula, a dance in 7/8 meter
(3+2+2) of high status still survives. It always opens village feasts
and evokes feelings of national pride. Its movements are of an
archaic nature as seen from classical vase paintings. About
one-tenth of the song melodies to this dance still appear to have
six-bar melodic phrases. The tempo, however, is too slow for
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singing Homeric verses to. Georgiades believes that the slowing
down of the tempo comes from the Greeks’ centuries-long
sufferings under Turkish occupation. This is however highly
improbable because for example the Bulgarians lived even longer
under Turkish domination but yet kept their fast dancing.
Whatever may be the case, in Slavic Macedonia songs survive in
716 meter with six-bar phrases. Even if this was an originally
Greek phenomenon it is not unusual that it was forgotten in
Greece and lived on elsewhere. The fez, originally a Christian hat,
now survives as a typical Muslim hat.

[ conclude this survey of shifting processes with the Gregorian
hymn Salve festa dies, remetricised in 7/16. In its text, written by
the VIth century poet-bishop Venantius Fortunatus of Poitiers, all
odd-numbered first lines are in hexameter, whereas the even ones
represent the related pentameter [---—--- [—eemee - l. In order to
show the affinity of the fourth ecclesiastical mode with the Turkish
makam segah | gave my notation of this hymn the key-signature
of that makam (see Ex.6 — [{]=here a lowering by one comma?).

Ex.6 - Another remetricisation of a Gregorian hymn by W. Swets
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1 Alus Nus: Rumeli tiirkiileri. Prigtine (PriStina, Kosovo, Yugoslavia) 1988;
this collection of folk songs by Turks formerly and still living in the
Balkans contains, like many other collections of Balkan and Turkish
folk songs numerous especially metrically erroneous transcriptions,
which [ had to correct or reconstruct as in the example given here.

2 My metric nomenclature usually employs /4 for MMJ=75-150, /8 for
J»=150-300, /16 for S=300-600 etc.

3 The word “anacrusis” is here used to mean syllables following an
initial rest in a bar and leading up to the first beat of the next bar.

4 Shifting processes between the metrical patterns of folkdance songs

and tunes in the Balkans and Asia Minor - In: Harmonie en perspectief
p. 333, Deventer 1988.

5 I now use (1996) a Roland A30 synthesizer

6 The Roland A30 (see [°] here) ranges six-and-a-half octaves [c0] to [g6],
vastly widening the scope of microtonal usage.

7 The 53-tone-tempered comma, 22.6 cents

Swets: Shifting Processes in Balkan and Near Fastern Music 23



Programme of the Ratio Festival 1993

Saturday, April 3

18:30  Opening Concert

Nine Bells [1979] by Tom Johnson Tom Johnson (walk, bells)
11 rei de spagna (The king of Spain) —
Improvisation on an anonymous cantus firmus [XVth Century]
Crawford Young (lute)
Randall Cook (vielle/gamba)
Madhyalay and Drut Gat in Raga Yaman (Tintal) Improvisation
Nandkishore Muley (santoor)
Debendra K. Chakraborty (tabla)
Magam Nahawand — Improvisation Omar Bashir (ud)
Ch’imhyangmu
(Dance in the Perfume of the Aloes) [1974] by Hwang Byung-ki
Inok Paek (kayagum)
...until... No.7 [1972/80] by Clarence Barlow
Ireen Thomas (lute)
Pingsha Luoyan (Wild Geese descending on the Sandbank) [1634]
Chen Leiji (qin)
Bandesh in Ragas Kamod and Desh [ca.1960] —
Improvisation on compositions of Radhika Mohan Maitra
Buddhadev Dasgupta (sarod)
Debendra K. Chakraborty (tabla)
Wasla Baghdadia (Baghdad Suite) [1986] by Julien Weiss
Julien Weiss (qanun)
Ma fin est mon commencement (My end is my beginning) —
Rondeau no.14 by Guillaume de Machaut [XIVth century]
Omnes

Sunday, April 4

11:00

13:00

15:30

18:30
20:00

Lecture by David Osbon (London/The Hague) —

A Resumé of the Ratio Symposium of December 1992
Workshop with Crawford Young (Basle), lute,

and Randall Cook (Basle), vielle and gamba

Workshop with Volker Abel (Darmstadt) —

Synthesis Performance and Analysis of Microtonal Structures
Concert by Ensemble Sine Nomine (The Hague): Early Music
Concert by Crawford Young (Basle), lute,

and Wendell Cook (Basle), vielle and gamba: Early Music



Monday, April 5

13:00 Workshop with Buddhadev Dasgupta (Calcutta), sarod
15:30 Workshop with Omar Bashir (Budapest), ud

18:30 Concert by Chen Leiji (Lyon), qin

20:00 Concert by Inok Paek (London), kayagum

Tuesday, April 6
1100 Lecture by Trevor Wishart (York) —
Spectral transformation and rhythm
13:00 Workshop with Julien Weiss (Paris), ganun
15:30 Workshop with Nandkishore Muley (Beilm), santoor
18:30 Concert by Ananda Sukarlan (The Hague), piano,
Anne La Berge (Amsterdam), flute,
Gerard Bouwhuis (The Hague), piano,
Marantz Pianocorder, Stereo Tape: Contemporary Music
20:00 Concert by Kudsi Erguner (Paris), nay and
Nezih Uzel (Istanbul), voice and percussion

Wednesday, April 7

13:00 Workshop with Chen Leiji (Lyon), qin

15:30 Workshop with Inok Paek (London), kayagum
18:30 Concert by Julien Weiss (Paris), ganun

20:00 Concert by Omar Bashir (Budapest), ud

Thursday, April 8
11:00 Lecture-Demonstration by Debendra K. Chakraborty (Calcutta), tabla
Rhythmic Structures in North Indian Tabla Composition
13:00 Workshops with Anne LaBerge (Amsterdam), flute:
Playing in Microtonal Equal and Mixed Temperaments
and Howard Cohen (Herne, Westphalia), flute:
Playing in Integrated Just Intonation
15:30 Workshop with Kudsi Erguner (Paris), nay,
and Nezih Uzel (Istanbul), voice and percussion
18:30 Concert by Nandkishore Muley (Berlin), santoor,
and Debendra K. Chakraborty (Calcutta), tabla
20:00 Concert by Buddhadev Dasgupta (Calcutta), sarod,
and Debendra K. Chakraborty (Calcutta), tabla



